6533b7d7fe1ef96bd1267c0e
RESEARCH PRODUCT
TIME-MINIMAL CONTROL OF DISSIPATIVE TWO-LEVEL QUANTUM SYSTEMS: THE INTEGRABLE CASE
Dominique SugnyBernard Bonnardsubject
0209 industrial biotechnologyControl and OptimizationIntegrable systemQuantum dynamics[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences02 engineering and technology01 natural sciences020901 industrial engineering & automation[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesQuantum operation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsMathematical PhysicsMathematicsMathematical physicsLindblad equationApplied MathematicsMathematical analysis[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mathematical Physics (math-ph)[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]16. Peace & justice49K15 70Q05Quantum processDissipative systemQuantum algorithm[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Hamiltonian (control theory)description
The objective of this article is to apply recent developments in geometric optimal control to analyze the time minimum control problem of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. We focus our analysis on the case where the extremal Hamiltonian is integrable.
year | journal | country | edition | language |
---|---|---|---|---|
2009-01-01 |