6533b7d7fe1ef96bd1267c5e

RESEARCH PRODUCT

A symmetric Galerkin BEM for plate bending analysis

T. PanzecaMaria SalernoVincenza Milana

subject

Symmetric Galerkin Boundary Element MethodDiscretizationMechanical EngineeringMultiple integralMathematical analysisPlate bendingGeneral Physics and AstronomyBending of platesRigid bodyHermitian matrixFinite element methodhypersingular integrals.Mechanics of MaterialsGeneral Materials ScienceGalerkin methodSettore ICAR/08 - Scienza Delle CostruzioniBoundary element methodplate bending SBEM Hypersingular integralsMathematics

description

Abstract The Symmetric Galerkin Boundary Element Method is employed in thin plate bending analysis in accordance with the Love–Kirchhoff kinematical assumption. The equations are obtained through the stationary conditions of the total potential energy, written for a plate whose boundary is discretized in boundary elements. Since the matrix coefficients are made up as double integrals with high order singularities, a strategy is shown to compute these coefficients in closed form. Furthermore, in order to model the kinematical discontinuities and to weight the mechanical quantities along the boundary elements, the Lagrangian quadratic shape functions, rather than C 1 type (spline, Hermitian), are employed. The effectiveness of the matrix coefficients is shown through the rigid body movement technique.

10.1016/j.euromechsol.2008.02.004http://hdl.handle.net/11588/416401