6533b7d7fe1ef96bd1267c74
RESEARCH PRODUCT
PI3K inhibition reduces murine and human liver fibrogenesis in precisioncut liver slices
Peter OlingaDetlef SchuppanYong Ook KimAnouk OldenburgerJörg F. RippmannMiriam BoersemaEmilia GoreEmilia Bigaevasubject
0301 basic medicineLiver CirrhosisMalePrecision-cut tissue slicesPROGRESSIONPharmacologyBILIARYBiochemistryPI3KGSK2126458JejunumMicePhosphatidylinositol 3-Kinases0302 clinical medicineAdenosine TriphosphateFibrosisFIBROSIShealth care economics and organizationsPhosphoinositide-3 Kinase InhibitorsSulfonamidesPyridazinesmedicine.anatomical_structureJejunumTARGET030220 oncology & carcinogenesisToxicityQuinolinesPhosphorylationmedicine.symptomATP Binding Cassette Transporter Subfamily BLiver fibrosisEARLY-ONSETInflammation03 medical and health sciencesmedicineAnimalsHumansOmipalisibProtein kinase BPI3K/AKT/mTOR pathwayPharmacologybusiness.industryCUT LIVERmedicine.diseaseMice Inbred C57BLMODEL030104 developmental biologybusinessMATRIXEx vivodescription
Background: Liver fibrosis results from continuous inflammation and injury. Despite its high prevalence worldwide, no approved antifibrotic therapies exist. Omipalisib is a selective inhibitor of the PI3K/mTOR pathway that controls nutrient metabolism, growth and proliferation. It has shown antifibrotic properties in vitro. While clinical trials for idiopathic pulmonary fibrosis have been initiated, an in-depth preclinical evaluation is lacking. We evaluated omipalisib's effects on fibrogenesis using the ex vivo model of murine and human precision-cut tissue slices (PCTS).Methods: Murine and human liver and jejunum PCTS were incubated with omipalisib up to 10 mu M for 48 h. PI3K pathway activation was assessed through protein kinase B (Akt) phosphorylation and antifibrotic efficacy was determined via a spectrum of fibrosis markers at the transcriptional and translational level.Results: During incubation of PCTS the PI3K pathway was activated and incubation with omipalisib prevented Akt phosphorylation (IC50 = 20 and 1.5 nM for mouse and human, respectively). Viability of mouse and human liver PCTS was compromised only at the high concentration of 10 and 1-5 mu M, respectively. However, viability of jejunum PCTS decreased with 0.1 (mouse) and 0.01 mu M (human). Spontaneously increased fibrosis related genes and proteins were significantly and similarly suppressed in mouse and in human liver PCTS.Conclusions: Omipalisib has antifibrotic properties in ex vivo mouse and human liver PCTS, but higher concentrations showed toxicity in jejunum PCTS. While the PI3K/mTOR pathway appears to be a promising target for the treatment of liver fibrosis, PCTS revealed likely side effects in the intestine at higher doses.
year | journal | country | edition | language |
---|---|---|---|---|
2019-11-01 | Biochemical Pharmacology |