6533b7d7fe1ef96bd12681fc

RESEARCH PRODUCT

New insights into the pharmacology of the short-chain free fatty acid receptors 2 and 3

Elisabeth Moussaud

subject

[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesFree fatty acid receptorsModèle structuralDiabèteShort-chain free fatty acidsPharmacologieRécepteurs couplés aux protéines GG protein coupled receptors[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyObesityObésitéStructural model[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesPharmacology[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesSite-directed mutagenesis[SDV.MHEP] Life Sciences [q-bio]/Human health and pathologyDiabetesMetabolic diseasesRécepteurs aux acides grasMutagénèse à site dirigéMaladies métaboliquesDyslipidemiaAcides gras à chaîne courte[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyDyslipidémie

description

Metabolic diseases, such as diabetes, dyslipidemia or obesity, are more and more weighing on public health expenses in developed countries. Despite active research, these widespread diseases remain difficult to handle. Promising new therapeutic strategies against metabolic diseases include the development of drugs targeting the free fatty acid receptors, as key players in metabolism homeostasis. In this context, the current PhD thesis focuses on the study of two G protein-coupled receptors, namely the short-chain free fatty acid receptors 2 (FFA2) and 3 (FFA3). First, we investigated the expression of the two receptors of interest in a variety of cell types. Then, in order to study the pharmacology and the binding mode of endogenous and synthetic agonists on FFA2 and FFA3, we established stable cell lines expressing each receptor. Once we identified the signaling pathways engendered in response to receptor activation, we showed that synthetic agonists were allosteric activators of the receptors, in the sense that they bind to the receptors at a distinct site from short-chain fatty acids, i.e. the endogenous agonists. To identify the aminoacid residues that were involved in ligand binding, we generated a variety of point mutated receptors by site-directed mutagenesis. By analyzing the effects of the mutations in functional tests, we determined precisely the aminoacid residues that were essential for ligand binding. From these results, we designed in silico structural models which may aid future drug design efforts for the discovery of new FFA2 and FFA3 agonists.

https://tel.archives-ouvertes.fr/tel-00668234/document