6533b7d7fe1ef96bd12683b2

RESEARCH PRODUCT

PT-symmetry and Schrödinger operators. The double well case

Johannes SjöstrandNawal MecheroutNaima BoussekkineThierry Ramond

subject

General Mathematics010102 general mathematicsSemiclassical physicsPerturbation (astronomy)01 natural sciencessymbols.namesakeOperator (computer programming)0103 physical sciencessymbols010307 mathematical physics0101 mathematicsEigenvalues and eigenvectorsSchrödinger's catMathematical physicsMathematics

description

We study a class of $PT$-symmetric semiclassical Schrodinger operators, which are perturbations of a selfadjoint one. Here, we treat the case where the unperturbed operator has a double-well potential. In the simple well case, two of the authors have proved in [6] that, when the potential is analytic, the eigenvalues stay real for a perturbation of size $O(1)$. We show here, in the double-well case, that the eigenvalues stay real only for exponentially small perturbations, then bifurcate into the complex domain when the perturbation increases and we get precise asymptotic expansions. The proof uses complex WKB-analysis, leading to a fairly explicit quantization condition.

https://doi.org/10.1002/mana.201500075