6533b7d7fe1ef96bd1268483

RESEARCH PRODUCT

Optimality of Increasing Stability for an Inverse Boundary Value Problem

Pu-zhao KowGunther UhlmannJenn-nan Wang

subject

increasing stability phenomenaosittaisdifferentiaaliyhtälötinstabilityComputational MathematicsMathematics - Analysis of PDEsApplied Mathematics35J15 35R25 35R30FOS: MathematicsSchrödinger equationinverse boundary value probleminversio-ongelmatAnalysisAnalysis of PDEs (math.AP)

description

In this work we study the optimality of increasing stability of the inverse boundary value problem (IBVP) for the Schrödinger equation. The rigorous justification of increasing stability for the IBVP for the Schrödinger equation were established by Isakov [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and by Isakov et al. [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141]. In [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141], the authors showed that the stability of this IBVP increases as the frequency increases in the sense that the stability estimate changes from a logarithmic type to a Hölder type. In this work, we prove that the instability changes from an exponential type to a Hölder type when the frequency increases. This result verifies that results in [Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), pp. 631--640] and [Inverse Problems and Applications, Contemp. Math. 615, American Math Society, Providence, RI, 2014, pp. 131--141] are optimal. peerReviewed

https://doi.org/10.1137/21m1402169