6533b7d7fe1ef96bd12684d4

RESEARCH PRODUCT

Multidimensional shaping of spatiotemporal waves in multimode nonlinear fibers

Agnès Desfarges-berthelemotStefan WabnitzKatarzyna KrupaGuy MillotAlioune NiangDaniele ModottoEtienne DeliancourtMarc FabertAlain BarthélémyAlessandro TonelloVincent CoudercVincent Kermène

subject

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]multimode optical fibersOptical fiberPhysics::OpticsTapering02 engineering and technologyTransverse effectsSupercontinuum generation01 natural scienceslaw.invention010309 opticsOpticsKerr effectlawNonlinear fiber optics0103 physical sciencessolitonsComputingMilieux_MISCELLANEOUSPhysicsWavefront[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiberbusiness.industrynonlinear opticsFiber amplifiersmultimode optical fibers; fiber lasers; nonlinear optics; solitons021001 nanoscience & nanotechnologyfiber lasersSupercontinuumNonlinear systemPhysics::Accelerator PhysicsFiber amplifiers; Kerr effect; Nonlinear fiber optics; Supercontinuum generation; Transverse effectsLaser beam quality0210 nano-technologybusinessBeam (structure)

description

Recent experiments have shown that nonlinear wave propagation in multimode optical fibers leads to complex spatio-temporal phenomena. In this talk, we introduce new approaches for the control and optimization of nonlinear beam reshaping in the spatial, temporal and spectral dimensions. The first approach applies to spatial beam self-cleaning the technique of transverse wavefront shaping, which permits to launch an optimized input mode combination, that results in the stable generation of a whole nonlinear mode alphabet at the fiber output. The second approach introduces a longitudinal tapering of the core diameter of multimode active and passive fibers, which permits to generate ultra-wideband and high brightness supercontinuum light, featuring high spatial beam quality.

10.1109/icton.2019.8840457http://hdl.handle.net/11379/537988