6533b7d7fe1ef96bd12685fb
RESEARCH PRODUCT
PGC-1α: a master gene that is hard to master
Johanna MäkeläNatale BelluardoOve ErikssonDan LindholmLaura Korhonensubject
medicine.medical_specialtyModels NeurologicalSettore BIO/11 - Biologia MolecolareRNA-binding proteinBiologyMitochondrionSettore BIO/09 - FisiologiaMiceCellular and Molecular NeuroscienceHeat shock proteinInternal medicinemedicineAnimalsHomeostasisHumansReceptorMolecular BiologyTranscription factorHeat-Shock ProteinsMice KnockoutPharmacologyPGC-1α Mitochondria Dopaminergic neurons Transgenic animal Adenovirus Parkinson’s diseaseDopaminergic NeuronsDopaminergicRNA-Binding ProteinsParkinson DiseaseCell BiologyPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaMitochondriaEndocrinologyCell metabolismNerve DegenerationTrans-ActivatorsMolecular MedicineNeuroscienceHomeostasisTranscription Factorsdescription
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a transcriptional coactivator that favorably affects mitochondrial function. This concept is supported by an increasing amount of data including studies in PGC-1α gene-deleted mice, suggesting that PGC-1α is a rescue factor capable of boosting cell metabolism and promoting cell survival. However, this view has now been called into question by a recent study showing that adeno-associated virus-mediated PGC-1α overexpression causes overt cell degeneration in dopaminergic neurons. How is this to be understood, and can these seemingly conflicting findings tell us something about the role of PGC-1α in cell stress and in control of neuronal homeostasis?
year | journal | country | edition | language |
---|---|---|---|---|
2012-06-09 | Cellular and Molecular Life Sciences |