6533b7d7fe1ef96bd1268653

RESEARCH PRODUCT

Ag44(EBT)26(TPP)4Nanoclusters With Tailored Molecular and Electronic Structure

Hannu HäkkinenGuocheng DengTaeghwan HyeonSanghwa LeeSami MalolaWoonhyuk BaekNanfeng ZhengMegalamane S. Bootharaju

subject

Steric effectsPhotoluminescenceMaterials science010405 organic chemistrySuperatomQuantum yieldGeneral ChemistryElectronic structureGeneral Medicine010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesNanoclustersCrystallographychemistry.chemical_compoundchemistryTriphenylphosphinePhosphine

description

Although atomically precise metalloid nanoclusters (NCs) of identical size with distinctly different molecular structures are highly desirable to understand the structural effects on the optical and photophysical properties, their synthesis remains highly challenging. Herein, we employed phosphine and thiol capping ligands featuring appropriate steric effects and synthesized a charge-neutral Ag NC with the formula Ag44 (EBT)26 (TPP)4 (EBT: 2-ethylbenzenethiolate; TPP: triphenylphosphine). The single-crystal X-ray structure reveals that this NC has a hollow metal core of Ag12 @Ag20 and a metal-ligand shell of Ag12 (EBT)26 (TPP)4 . The presence of mixed ligands and long V-shaped metal-ligand motifs on this NC has resulted in an enhancement of the NIR-II photoluminescence quantum yield by >25-fold compared to an all-thiolate-stabilized anionic [Ag44 (SR)30 ]4- NC (SR: thiolate). Time-dependent density-functional calculations show that our Ag44 NC is an 18-electron superatom with a modulated electronic structure as compared to the [Ag44 (SR)30 ]4- anion, significantly influencing its optical properties.

https://doi.org/10.1002/ange.202015907