6533b7d7fe1ef96bd1268e6c
RESEARCH PRODUCT
On enhancing the object migration automaton using the Pursuit paradigm
Abdolreza ShirvaniB. John OommenB. John Oommensubject
Theoretical computer scienceGeneral Computer ScienceLearning automatabusiness.industryComputer scienceGraph partition020206 networking & telecommunications02 engineering and technologyObject (computer science)Field (computer science)Theoretical Computer ScienceAutomatonTask (computing)Modeling and Simulation0202 electrical engineering electronic engineering information engineeringBenchmark (computing)020201 artificial intelligence & image processingArtificial intelligencebusinessAssignment problemdescription
Abstract One of the most difficult problems that is all-pervasive in computing is that of partitioning. It has applications in the partitioning of databases into relations, the realization of the relations themselves into sub-relations based on the partitioning of the attributes, the assignment of processes to processors, graph partitioning, and the task assignment problem, etc. The problem is known to be NP-hard. The benchmark solution for this for the Equi-Partitioning Problem (EPP) has involved the classic field of Learning Automata (LA), and the corresponding algorithm, the Object Migrating Automata (OMA) has been used in all of these application domains. While the OMA is a fixed structure machine, it does not incorporate the Pursuit concept that has, recently, significantly enhanced the field of LA. In this paper, we pioneer the incorporation of the Pursuit concept into the OMA. We do this by a non-intuitive paradigm, namely that of removing (or discarding) from the query stream, queries that could be counter-productive. This can be perceived as a filtering agent triggered by a pursuit-based module. The resulting machine, referred to as the Pursuit OMA (POMA), has been rigorously tested in all the standard benchmark environments. Indeed, in certain extreme environments it is almost ten times faster than the original OMA reported in the legacy papers. 1 The application of the POMA to these application domains is extremely promising.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |