6533b7d7fe1ef96bd12690e6
RESEARCH PRODUCT
Quasisymmetric extension on the real line
Vyron VellisVyron Vellissubject
Mathematics::Combinatoricsrelatively connected setsApplied MathematicsGeneral Mathematics010102 general mathematicsta111Extension (predicate logic)Characterization (mathematics)01 natural sciencesCombinatoricsfunktioteoria0103 physical sciencesMathematics::Metric GeometryEmbedding010307 mathematical physics0101 mathematicsReal linequasisymmetric extensionMathematicsdescription
We give a geometric characterization of the sets $E\subset \mathbb{R}$ that satisfy the following property: every quasisymmetric embedding $f: E \to \mathbb{R}^n$ extends to a quasisymmetric embedding $f:\mathbb{R}\to\mathbb{R}^N$ for some $N\geq n$.
year | journal | country | edition | language |
---|---|---|---|---|
2018-03-12 | Proceedings of the American Mathematical Society |