6533b7d8fe1ef96bd126973e

RESEARCH PRODUCT

Explanation of theΔ5/2−(1930)as aρΔbound state

P. GonzálezJavier VijandeEulogi Oset

subject

CombinatoricsPhysicsNuclear and High Energy PhysicsFormalism (philosophy of mathematics)Particle physicsQuark modelEffective lagrangianBound stateVector meson

description

We use the $\ensuremath{\rho}\ensuremath{\Delta}$ interaction in the hidden gauge formalism to dynamically generate ${N}^{*}$ and ${\ensuremath{\Delta}}^{*}$ resonances. We show, through a comparison of the results from this analysis and from a quark model study with data, that the ${\ensuremath{\Delta}}_{5/{2}^{\ensuremath{-}}}(1930)$, ${\ensuremath{\Delta}}_{3/{2}^{\ensuremath{-}}}(1940)$, and ${\ensuremath{\Delta}}_{1/{2}^{\ensuremath{-}}}(1900)$ resonances can be assigned to $\ensuremath{\rho}\ensuremath{\Delta}$ bound states. More precisely the ${\ensuremath{\Delta}}_{5/{2}^{\ensuremath{-}}}(1930)$ can be interpreted as a $\ensuremath{\rho}\ensuremath{\Delta}$ bound state whereas the ${\ensuremath{\Delta}}_{3/{2}^{\ensuremath{-}}}(1940)$ and ${\ensuremath{\Delta}}_{1/{2}^{\ensuremath{-}}}(1900)$ may contain an important $\ensuremath{\rho}\ensuremath{\Delta}$ component. This interpretation allows for a solution of a long-standing puzzle concerning the description of these resonances in constituent quark models. In addition we also obtain degenerate ${J}^{P}=1/{2}^{\ensuremath{-}},3/{2}^{\ensuremath{-}},5/{2}^{\ensuremath{-}}$ ${N}^{*}$ states but their assignment to experimental resonances is more uncertain.

https://doi.org/10.1103/physrevc.79.025209