6533b7d8fe1ef96bd1269820
RESEARCH PRODUCT
CUSHAW2-GPU: Empowering Faster Gapped Short-Read Alignment Using GPU Computing
Yongchao LiuBertil Schmidtsubject
BacktrackingComputer scienceParallel computingSoftware_PROGRAMMINGTECHNIQUESShort readComputational scienceCUDAParallel processing (DSP implementation)Hardware and ArchitectureParallelism (grammar)Electrical and Electronic EngineeringGeneral-purpose computing on graphics processing unitsSoftwareComputingMethodologies_COMPUTERGRAPHICSdescription
We present CUSHAW2-GPU to accelerate the CUSHAW2 algorithm using compute unified device architecture (CUDA)-enabled GPUs. Two critical GPU computing techniques, namely intertask hybrid CPU-GPU parallelism and tile-based Smith-Waterman map backtracking using CUDA, are investigated to facilitate fast alignments. By aligning both simulated and real reads to the human genome, our aligner yields comparable or better performance compared to BWA-SW, Bowtie2, and GEM. Furthermore, CUSHAW2-GPU with a Tesla K20c GPU achieves significant speedups over the multithreaded CUSHAW2, BWA-SW, Bowtie2, and GEM on the 12 cores of a high-end CPU for both single-end and paired-end alignment.
year | journal | country | edition | language |
---|---|---|---|---|
2014-02-01 | IEEE Design & Test |