6533b7d8fe1ef96bd12698e4
RESEARCH PRODUCT
A context-aware approach for long-term behavioural change detection and abnormality prediction in ambient assisted living
Ibrahim KhalilAbdur Rahim Mohammad ForkanSebti FoufouAbdelaziz BourasZahir Tarisubject
Activities of daily livingComputer scienceContext (language use)computer.software_genreMachine learningHidden Markov ModelArtificial IntelligencePattern recognitionHealth careCloud computingTrend detectionHidden Markov modelFuzzy ruleContext-awarebusiness.industryHealthcare[INFO.INFO-IA]Computer Science [cs]/Computer Aided EngineeringStatistical process control3. Good healthAmbient assisted livingRemote monitoringEldercareAnticipation (artificial intelligence)Signal ProcessingPattern recognition (psychology)Change detectionComputer Vision and Pattern RecognitionArtificial intelligenceData miningbusinesscomputerSoftwareChange detectiondescription
This research aims to describe pattern recognition models for detecting behavioural and health-related changes in a patient who is monitored continuously in an assisted living environment. The early anticipation of anomalies can improve the rate of disease prevention. Here we present different learning techniques for predicting abnormalities and behavioural trends in various user contexts. In this paper we described a Hidden Markov Model based approach for detecting abnormalities in daily activities, a process of identifying irregularity in routine behaviours from statistical histories and an exponential smoothing technique to predict future changes in various vital signs. The outcomes of these different models are then fused using a fuzzy rule-based model for making the final guess and sending an accurate context-aware alert to the health-care service providers. We demonstrated the proposed techniques by evaluating some case studies for different patient scenarios in ambient assisted living. 2014 Elsevier Ltd. All rights reserved. The authors wish to acknowledge the support of NICTA (National ICT Australia) of Victoria Research Lab for funding the research work presented in this paper. NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence Program. Scopus
year | journal | country | edition | language |
---|---|---|---|---|
2015-03-01 | Pattern Recognition |