6533b7d8fe1ef96bd1269999

RESEARCH PRODUCT

Templated growth of smart nanocomposite thin films: Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition of vanadyl acetylacetonate, auric acid and tetraoctyl ammonium bromide

Russell BinionsGeoffrey HyettIvan P. ParkinManfredi SaeliClara Piccirillo

subject

Ammonium bromideNanocompositeInorganic chemistryOxideSettore ICAR/10 - Architettura TecnicaChemical vapor depositionVanadium oxideInorganic Chemistrychemistry.chemical_compoundCVD Nanocomposite Thermochromism Aerosol HybridSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryX-ray photoelectron spectroscopyChemical engineeringColloidal goldMaterials ChemistryChemical Vapor Deposition CVD Vanadium dioxide thermochromic coatingsPhysical and Theoretical ChemistryVanadyl acetylacetonate

description

Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition methodology has been utilised to produce nanocomposite thin films of gold nanoparticles and vanadium dioxide from vanadyl acetylacetonate and auric acid. The addition of tetraoctyl ammonium bromide (TOAB) to the precursor Solution gave control of the size and distribution of gold nanoparticles in the vanadium oxide matrix. These reactions led to vanadium dioxide films with reduced crystallite sizes and enhanced thermochromic properties. The films were analysed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Their optical and thermochromic behaviour was also determined, This hybrid method shows great potential for the production of nanocomposite thin films with good physical properties. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

10.1016/j.poly.2009.03.025http://hdl.handle.net/10447/567668