Templated growth of smart nanocomposite thin films: Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition of vanadyl acetylacetonate, auric acid and tetraoctyl ammonium bromide
Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition methodology has been utilised to produce nanocomposite thin films of gold nanoparticles and vanadium dioxide from vanadyl acetylacetonate and auric acid. The addition of tetraoctyl ammonium bromide (TOAB) to the precursor Solution gave control of the size and distribution of gold nanoparticles in the vanadium oxide matrix. These reactions led to vanadium dioxide films with reduced crystallite sizes and enhanced thermochromic properties. The films were analysed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Their optical and thermochromic behaviour was also determined, This h…
Vanadium dioxide and gold nanocomposite films for glazing applications
Vanadium dioxide is a material with great potential as an intelligent glazing material. The technology is based on a metal to semiconductor transition (MST) where there is an associated structural change from the higher temperature rutile structure to the lower temperature monoclinic structure. This structural transition results in significant changes in optical properties and electrical conductivity. Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition methodology has been utilised, to produce thin films of gold nano-particle vanadium dioxide nanocomposites. Good surface coverage is observed comparable to that of APCVD processes and a variety of different film thickn…
Nano-composite thermochromic thin films and their application in Energy-efficient glazing
A hybrid atmospheric pressure and aerosol-assisted chemical vapour deposition strategy is presented as a facile route for the production of vanadium dioxide nano-composite thin films. The effect of the inclusion of gold nanoparticles and the use of a surfactant molecule, tetraoctylammonium bromide, is discussed. The films were fully characterised using a wide variety of techniques, including scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV/vis/NIR spectroscopy. It is shown that micro-structural changes brought about by careful control of film growth conditions, and/or the use of surfactant, lead to an enhancement of thermochromic properties. Gold nano…
Antimicrobial activity of methylene blue and toluidine blue O covalently bound to a modified silicone polymer surface
Methylene Blue or Toluidine Blue O were covalently bound to an activated silicone polymer by means of an amide condensation reaction. UV-visible absorption spectra confirmed that the dye was surface bound. The new polymers with covalently attached dye display significant bactericidal activity against Escherichia coli and Staphylococcus epidermidis with a 99.999% reduction in viable bacteria after four minutes exposure to a low power laser.
Deposition of tin sulfide thin films from tin(iv) thiolate precursors
AACVD (aerosol-assisted chemical vapour deposition) using (PhS)(4)Sn as precursor leads to the deposition of Sn3O4 in the absence of H2S and tin sulfides when H2S is used as co-reactant. At 450 degreesC the film deposited consists of mainly SnS2 while at 500 degreesC SnS is the dominant component. The mechanism of decomposition of (PhS)(4)Sn is discussed and the structure of the precursor presented.
Hybrid aerosol assisted atmospheric pressure Chemical Vapour Deposition: a facile route toward nano-composite thin films?
A hybrid chemical vapour deposition strategy is presented as a facile route for the production of vanadium dioxide nano-composite thin films. The effect of the inclusion of gold nano-particles and the use of a surfactant molecule; tetraoctylammonium bromide (TOAB), is discussed. The films are fully characterised and it is shown that micro-structural changes lead to an enhancement of thermochromic properties, whilst gold nano-particles lead to a change in the films optical properties. Optical data is used in energy modelling studies to elucidate the films potential as an energy saving coating in architectural glazing.
Energy modelling studies of thermochromic glazing
Theoretically thermochromic glazing has the potential to reduce energy consumption in buildings by allowing visible light for day lighting, reducing unwanted solar gain during the cooling season, whilst allowing useful solar gain in the heating season. In this study building simulation is used to predict the savings made by novel thermochromic glazing coatings compared to standard products, for locations with different climates. The results suggest that thermochromic glazing can have a significant energy saving effect compared to current approaches.
Structural distortions in homoleptic (RE)4A (E = O, S, Se; A = C, Si, Ge, Sn): Implications for the CVD of tin sulfides
The structures of Sn(SBut)4 and Sn(SCy)4 have been determined and adopt S4 and D2 conformations respectively; the anion [(PhS)Sn3]−, as its Ph4P+ salt, has a structure approaching Cs symmetry. In all three compounds, there are large variations in the ∠S–Sn–S within the same molecule, which have been rationalised in terms of the C–S–Sn–S–C conformations. For Sn(SR)4, the ∠S–Sn–S increases as the conformations change from trans, trans to trans, gauche and gauche, gauche, as the number of eclipsed lone pairs decreases and this rationale is shown to be applicable to a variety of A(ER)4 (A = C, Si, Ge, Sn; E = O, S, Se) and related [Mo(SR)4, Ga(SR)4−] systems. AM1 calculations have been used to …
Templated growth of smart coatings: Hybrid chemical vapour deposition of vanadyl acetylacetonate with tetraoctyl ammonium bromide
Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition methodology has been utilised to produce thin films of vanadium dioxide from vanadyl acetylacetonate. Tetraoctyl ammonium bromide (TOAB) was used in the aerosol precursor solution. The films were analysed by X-ray diffraction, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy. Their optical and thermochromic behaviour was also determined. It was found that the use of TOAB had a templating effect that led to a halving in the particle size and that this consequently led to a significant decrease in the thermochromic transition temperature of the films to 34 8C.
Synthesis and thermal decomposition studies of homo- and heteroleptic tin(iv) thiolates and dithiocarbamates: molecular precursors for tin sulfides
The syntheses and X-ray structures of novel heteroleptic thiolate/dithiocarbamate derivatives (Et2NCS2)2(RS)2Sn (R = Cy, CH2CF3) have been examined and their thermal decompositions compared with those of selected tin(II) and tin(IV) dithiocarbamates. The heteroleptic species decompose to SnS by initial elimination of RSSR to afford (Et2NCS2)2Sn and subsequent loss of [Et2NC(S)]2S. In contrast, (Et2NCS2)4Sn decomposes via [(Et2NCS2)2SnS]2, whose structure has been determined, and finally to SnS2 by sequential elimination of [Et2NC(S)]2S. The two families of compounds, (R2NCS2)4Sn and (Et2NCS2)2(RS)2Sn, thus provide single-source materials for bulk SnS2 and SnS, respectively, by virtue of the…
Optimisation of Thermochromic Thin Films on Glass; Design of Intelligent Windows
Theoretically thermochromic glazing has the potential to reduce energy consumption in buildings by allowing visible light for day lighting, reducing unwanted solar gain during the cooling season, while allowing useful solar gain in the heating season. In this study building simulation is used to predict the savings made by novel thermochromic glazing coatings compared to standard products, for locations with different climates. The results suggest that thermochromic glazing can have a significant energy saving effect compared to current approaches.