6533b7d8fe1ef96bd12699be
RESEARCH PRODUCT
Subsignal-based denoising from piecewise linear or constant signal
Eric FauvetOuadi BeyaBushra JalilOlivier Laligantsubject
Mathematical optimization[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingComputer scienceStochastic resonanceNoise reduction[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing02 engineering and technology01 natural sciencesMultiplicative noisePiecewise linear function010104 statistics & probabilitySpeckle patternsymbols.namesakeSignal-to-noise ratioWavelet[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing0202 electrical engineering electronic engineering information engineering0101 mathematicsSignal transfer functionShrinkageSignal reconstructionNoise (signal processing)General EngineeringNonlinear opticsWavelet transform020206 networking & telecommunicationsTotal variation denoisingAtomic and Molecular Physics and OpticsAdditive white Gaussian noiseGaussian noisePiecewisesymbolsStep detectionAlgorithm[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingdescription
15 pages; International audience; n the present work, a novel signal denoising technique for piecewise constant or linear signals is presented termed as "signal split." The proposed method separates the sharp edges or transitions from the noise elements by splitting the signal into different parts. Unlike many noise removal techniques, the method works only in the nonorthogonal domain. The new method utilizes Stein unbiased risk estimate (SURE) to split the signal, Lipschitz exponents to identify noise elements, and a polynomial fitting approach for the sub signal reconstruction. At the final stage, merging of all parts yield in the fully denoised signal at a very low computational cost. Statistical results are quite promising and performs better than the conventional shrinkage methods in the case of different types of noise, i.e., speckle, Poisson, and white Gaussian noise. The method has been compared with the state of the art SURE-linear expansion of thresholds denoising technique as well and performs equally well. The method has been extended to the multisplitting approach to identify small edges which are difficult to identify due to the mutual influence of their adjacent strong edges.
year | journal | country | edition | language |
---|---|---|---|---|
2011-11-01 |