6533b7d8fe1ef96bd1269c50

RESEARCH PRODUCT

Systematic study of nuclear effects in p+Al, p+Au, d+Au, and 3He+Au collisions at √sNN = 200 GeV using π0 production

Phenix Collaboration

subject

kvarkki-gluoniplasmahiukkasfysiikkaydinfysiikka

description

The PHENIX Collaboration presents a systematic study of inclusive π0 production from p+p, p+Al, p+Au, d+Au, and 3He+Au collisions at √sNN = 200 GeV. Measurements were performed with different centrality selections as well as the total inelastic, 0–100%, selection for all collision systems. For 0–100% collisions, the nuclear-modification factors, RxA, are consistent with unity for pT above 8GeV/c, but exhibit an enhancement in peripheral collisions and a suppression in central collisions. The enhancement and suppression characteristics are similar for all systems for the same centrality class. It is shown that for high-pT−π0 production, the nucleons in the d and 3He interact mostly independently with the Au nucleus and that the counterintuitive centrality dependence is likely due to a physical correlation between multiplicity and the presence of a hard scattering process. These observations disfavor models where parton energy loss has a significant contribution to nuclear modifications in small systems. Nuclear modifications at lower pT resemble the Cronin effect—an increase followed by a peak in central or inelastic collisions and a plateau in peripheral collisions. The peak height has a characteristic ordering by system size as p+Au>d+Au>3He+Au>p+Al. For collisions with Au ions, current calculations based on initial-state cold nuclear matter effects result in the opposite order, suggesting the presence of other contributions to nuclear modifications, in particular at lower pT. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-202208114019