6533b7d8fe1ef96bd126a2dd

RESEARCH PRODUCT

A new glucose-repressible gene identified from the analysis of chromatin structure in deletion mutants of yeast SUC2 locus.

Emilia MatallanaJ. E. Perez-ortinLuis FrancoCarmen González-boschJuan Carlos Igual

subject

Transcription GeneticSaccharomyces cerevisiaeMutantGenes FungalMolecular Sequence DataBioengineeringLocus (genetics)Saccharomyces cerevisiaeApplied Microbiology and BiotechnologyBiochemistryOpen Reading FramesGene Expression Regulation FungalGeneticsAmino Acid SequenceDNA FungalGeneChIA-PETRegulation of gene expressionGeneticsbiologyBase SequenceNucleic acid sequencebiology.organism_classificationAcetyl-CoA C-AcyltransferaseBlotting NorthernChromatinChromatinGlucoseMutagenesisBiotechnologyPlasmids

description

We have previously shown that some changes occur in the chromatin structure of the 3' flank of the yeast SUC2 gene in going from a repressed to an active state. In an attempt to find out the causes of these changes, we have carried out experiments in which mutant copies of SUC2 locus lacking either 5' or 3' flanks have been analysed for their transcriptional activity and chromatin structure. These experiments allowed us to discard any relationship between SUC2 transcription and chromatin changes within its 3'flank. Sequencing of this flank and mRNA analysis, however, resulted in the location of a putative peroxisomal 3-oxoacyl-CoA thiolase gene (POT1), which is repressible by glucose. The disruption of the gene produced a yeast strain unable to use oleic acid as a carbon source. This is the first time that chromatin structure analysis has permitted the identification of a new gene.

10.1002/yea.320070408https://pubmed.ncbi.nlm.nih.gov/1872029