6533b7d8fe1ef96bd126a30f

RESEARCH PRODUCT

Long term effects of peripubertal stress on excitatory and inhibitory circuits in the prefrontal cortex of male and female mice.

Marta Perez-randoJulia AlcaideJuan NacherEsther Castillo-gómezClara Bueno-fernandezCarmen SandiSimona Coviello

subject

Neurophysiology and neuropsychologyDendritic spinePhysiologybrainvulnerabilityNeurosciences. Biological psychiatry. Neuropsychiatrychronic social-isolationNeurotransmissionInhibitory postsynaptic potentialBiochemistry03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineEndocrinologyparvalbumin interneuronsBasket cellexpressionmedicineratOriginal Research ArticlePrefrontal cortexRC346-429Molecular BiologybiologyEndocrine and Autonomic SystemsQP351-495dendritic morphology030227 psychiatrymedicine.anatomical_structurenervous systemplasticitybiology.proteinExcitatory postsynaptic potentialNeural cell adhesion moleculeNeurology. Diseases of the nervous systemearly-life stressNeurosciencesex-differences030217 neurology & neurosurgeryParvalbuminRC321-571

description

Abstract The impact of stressful events is especially important during early life, because certain cortical regions, especially the prefrontal cortex (PFC), are still developing. Consequently, aversive experiences that occur during the peripubertal period can cause long-term alterations in neural connectivity, physiology and related behaviors. Although sex influences the stress response and women are more likely to develop stress-related psychiatric disorders, knowledge about the effects of stress on females is still limited. In order to analyze the long-term effects of peripubertal stress (PPS) on the excitatory and inhibitory circuitry of the adult PFC, and whether these effects are sex-dependent, we applied an unpredictable chronic PPS protocol based on psychogenic stressors. Using two strains of transgenic mice with specific fluorescent cell reporters, we studied male and diestrus females to know how PPS affects the structure and connectivity of parvalbumin expressing (PV+) interneurons and pyramidal neurons. We also studied the expression of molecules related to excitatory and inhibitory neurotransmission, as well as alterations in the expression of plasticity-related molecules. The structure of pyramidal neurons was differentially affected by PPS in male and female mice: while the former had a decreased dendritic spine density, the latter displayed an increase in this parameter. PPS affected the density of puncta expressing excitatory and inhibitory synaptic markers exclusively in the female mPFC. Similarly, only in female mice we observed an increased complexity of the dendritic tree of PV+ neurons. Regarding the perisomatic innervation on pyramidal and PV + neurons by basket cells, we found a significant increase in the density of puncta in stressed animals, with interesting differences between the sexes and the type of basket cell analyzed. Finally, the PPS protocol also altered the total number of somata expressing the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) when we analyzed both sexes together. These results highlight the strong programming effects of aversive experiences during early life for the establishment of cortical circuitry and the special impact of these stressful events on females.

10.1016/j.ynstr.2021.100322https://pubmed.ncbi.nlm.nih.gov/33869684