0000000000200777

AUTHOR

Esther Castillo-gómez

0000-0002-7566-0340

Streptozotocin diabetic mice display depressive-like behavior and alterations in the structure, neurotransmission and plasticity of medial prefrontal cortex interneurons.

Diabetes mellitus patients are at increased risk of developing depression, although the neurobiological bases of this comorbidity are not yet fully understood. These patients show CNS alterations, similar to those found in major depression, including changes in the structure and neurotransmission of excitatory neurons. However, although depressive patients and animal models also display alterations in inhibitory networks, little is known about the effects of diabetes on interneurons. Our main objective was to study the impact of diabetes on interneurons of the medial prefrontal cortex (mPFC), one of the regions most affected by major depression. For this purpose we have induced diabetes wit…

research product

Expression of PSA-NCAM and synaptic proteins in the amygdala of psychiatric disorder patients.

Neuroimaging has revealed structural abnormalities in the amygdala of different psychiatric disorders. The polysialylated neural cell adhesion molecule (PSA-NCAM), a molecule related to neuronal structural plasticity, which expression is altered in schizophrenia, major depression and in animal models of these disorders, may participate in these changes. However, PSA-NCAM has not been studied in the human amygdala. To know whether its expression and that of presynaptic markers, was affected in psychiatric disorders, we have analyzed post-mortem sections from the Stanley Neuropathology Consortium, which includes controls, schizophrenia, bipolar and major depression patients. PSA-NCAM was expr…

research product

PSA-NCAM expression in the rat medial prefrontal cortex

The rat medial prefrontal cortex, an area considered homologous to the human prefrontal cortex, is a region in which neuronal structural plasticity has been described during adulthood. Some plastic processes such as neurite outgrowth and synaptogenesis are known to be regulated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). Since PSA-NCAM is present in regions of the adult CNS which are undergoing structural remodeling, such as the hypothalamus or the hippocampus, we have analyzed the expression of this molecule in the medial prefrontal cortex of adult rats using immunohistochemistry. PSA-NCAM immunoreactivity was found both in cell bodies and in the neuropil of…

research product

Long term effects of peripubertal stress on excitatory and inhibitory circuits in the prefrontal cortex of male and female mice.

Abstract The impact of stressful events is especially important during early life, because certain cortical regions, especially the prefrontal cortex (PFC), are still developing. Consequently, aversive experiences that occur during the peripubertal period can cause long-term alterations in neural connectivity, physiology and related behaviors. Although sex influences the stress response and women are more likely to develop stress-related psychiatric disorders, knowledge about the effects of stress on females is still limited. In order to analyze the long-term effects of peripubertal stress (PPS) on the excitatory and inhibitory circuitry of the adult PFC, and whether these effects are sex-d…

research product

The TrkB agonist 7,8-dihydroxyflavone changes the structural dynamics of neocortical pyramidal neurons and improves object recognition in mice

This is a pre-print of an article published in Brain Structure and Function. The final authenticated version is available online at: https://doi.org/10.1007/s00429-018-1637-x. BDNF and its receptor TrkB have important roles in neurodevelopment, neural plasticity, learning, and memory. Alterations in TrkB expression have been described in different CNS disorders. Therefore, drugs interacting with TrkB, specially agonists, are promising therapeutic tools. Among them, the recently described 7,8-dihydroxyflavone (DHF), an orally bioactive compound, has been successfully tested in animal models of these diseases. Recent studies have shown the influence of this drug on the structure of pyramidal …

research product

N-methyl-d-aspartate receptor expression during adult neurogenesis in the rat dentate gyrus.

Abstract N -methyl- d -aspartate (NMDA) receptors play a crucial role in the regulation of neuronal development during embryogenesis and they also regulate the rate of neurogenesis and proliferation in the adult dentate gyrus. However, the mechanism by which they influence these processes is not fully understood. NMDA receptors seem to be functional in hippocampal precursor cells and recently generated granule neurons, although there is no anatomical correlate of these physiological observations. We have analyzed the expression of the NMDA receptor subunits NR1 and NR2B in precursor cells and recently generated granule neurons of the adult rat dentate gyrus, using 5′bromodeoxyuridine, green…

research product

A Critical Period for Prefrontal Network Configurations Underlying Psychiatric Disorders and Addiction

The medial prefrontal cortex (mPFC) has been classically defined as the brain region responsible for higher cognitive functions, including the decision-making process. Ample information has been gathered during the last 40 years in an attempt to understand how it works. We now know extensively about the connectivity of this region and its relationship with neuromodulatory ascending projection areas, such as the dorsal raphe nucleus (DRN) or the ventral tegmental area (VTA). Both areas are well-known regulators of the reward-based decision-making process and hence likely to be involved in processes like evidence integration, impulsivity or addiction biology, but also in helping us to predict…

research product

Polysialic acid is required for dopamine D2 receptor-mediated plasticity involving inhibitory circuits of the rat medial prefrontal cortex.

Decreased expression of dopamine D2 receptors (D2R), dysfunction of inhibitory neurotransmission and impairments in the structure and connectivity of neurons in the medial prefrontal cortex (mPFC) are involved in the pathogenesis of schizophrenia and major depression, but the relationship between these changes remains unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, may serve as a link. This molecule is expressed in cortical interneurons and dopamine, via D2R, modulates its expression in parallel to that of proteins related to synapses and inhibitory neurotransmission, suggesting that D2R-targeted antipsychotics/antidepressants…

research product

Dopamine acting through D2 receptors modulates the expression of PSA-NCAM, a molecule related to neuronal structural plasticity, in the medial prefrontal cortex of adult rats

A "neuroplastic" hypothesis proposes that changes in neuronal structural plasticity may underlie the aetiology of depression and the action of antidepressants. The medial prefrontal cortex (mPFC) is affected by this disorder and shows an intense expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-associated molecule, which is expressed mainly in interneurons. The monoamines serotonin, dopamine and noradrenaline are the principal targets of antidepressant action. Pharmacological manipulation of serotonin levels regulates synaptophysin and PSA-NCAM expression in the adult mPFC. However, the involvement of structural plasticity on the antidepress…

research product

Chronic stress induces changes in the structure of interneurons and in the expression of molecules related to neuronal structural plasticity and inhibitory neurotransmission in the amygdala of adult mice

Chronic stress in experimental animals, one of the most accepted models of chronic anxiety and depression, induces structural remodeling of principal neurons in the amygdala and increases its excitation by reducing inhibitory tone. These changes may be mediated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule related to neuronal structural plasticity and expressed by interneurons in the adult CNS, which is downregulated in the amygdala after chronic stress. We have analyzed the amygdala of adult mice after 21 days of restraint stress, studying with qRT-PCR the expression of genes related to general and inhibitory neurotransmission, and of PSA synthesizi…

research product

Expression of the transcription factor Pax6 in the adult rat dentate gyrus

The transcription factor Pax 6 is expressed in precursor cells during embryonic CNS development, and it plays an important role in the regulation of cell proliferation and neuronal fate determination. Pax 6-expressing cells are also present in the adult hippocampal dentate gyrus and subventricular zone/rostral migratory stream, regions in which neuronal precursors exist during adult life. In the adult dentate gyrus, precursor cells are located in the innermost portion of the granule cell layer, and Pax 6-expressing nuclei are most abundant in this region. To examine the putative role of Pax 6 in adult hippocampal neurogenesis, we have studied the proliferative activity, distribution, and ph…

research product

Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment Induce Changes in the Structure and Neurochemistry of Inhibitory Neurons of the Adult Amygdala and Prefrontal Cortex

AbstractThe exposure to aversive experiences during early life influences brain development and leads to altered behavior. Moreover, the combination of these experiences with subtle alterations in neurodevelopment may contribute to the emergence of psychiatric disorders, such as schizophrenia. Recent hypotheses suggest that imbalances between excitatory and inhibitory (E/I) neurotransmission, especially in the prefrontal cortex and the amygdala, may underlie their etiopathology. In order to understand better the neurobiological bases of these alterations, we studied the impact of altered neurodevelopment and chronic early-life stress on these two brain regions. Transgenic mice displaying fl…

research product

Effects of Dopamine on the Immature Neurons of the Adult Rat Piriform Cortex

The layer II of the adult piriform cortex (PCX) contains a numerous population of immature neurons. Interestingly, in both mice and rats, most, if not all, these cells have an embryonic origin. Moreover, recent studies from our laboratory have shown that they progressively mature into typical excitatory neurons of the PCX layer II. Therefore, the adult PCX is considered a “non-canonical” neurogenic niche. These immature neurons express the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule critical for different neurodevelopmental processes. Dopamine (DA) is a relevant neurotransmitter in the adult CNS, which also plays important roles in neural development and …

research product

Reduced interneuronal dendritic arborization in CA1 but not in CA3 region of mice subjected to chronic mild stress

Abstract Introduction Chronic stress induces dendritic atrophy and decreases spine density in excitatory hippocampal neurons, although there is also ample evidence indicating that the GABAergic system is altered in the hippocampus after this aversive experience. Chronic stress causes dendritic remodeling both in excitatory neurons and interneurons in the medial prefrontal cortex and the amygdala. Methods In order to know whether it also has an impact on the structure and neurotransmission of hippocampal interneurons, we have analyzed the dendritic arborization, spine density, and the expression of markers of inhibitory synapses and plasticity in the hippocampus of mice submitted to 21 days …

research product

Chronic Fluoxetine Treatment Increases the Expression of PSA-NCAM in the Medial Prefrontal Cortex

Recent hypotheses suggest that changes in neuronal structure and connectivity may underlie the etiology of depression. The medial prefrontal cortex (mPFC) is affected by depression and shows neuronal remodeling during adulthood. This plasticity may be mediated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), which is intensely expressed in the adult mPFC. As the expression of PSA-NCAM is increased by serotonin in other cerebral regions, antidepressants acting on serotonin reuptake may influence PSA-NCAM expression and thus counteract the effects of depression by modulating neuronal structural plasticity. Using immunohistochemistry, we have studied the relationship…

research product

The dendritic spines of interneurons are dynamic structures influenced by PSA-NCAM expression.

Excitatory neurons undergo dendritic spine remodeling in response to different stimuli. However, there is scarce information about this type of plasticity in interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate to mediate this plasticity as it participates in neuronal remodeling and is expressed by some mature cortical interneurons, which have reduced dendritic arborization, spine density, and synaptic input. To study the connectivity of the dendritic spines of interneurons and the influence of PSA-NCAM on their dynamics, we have analyzed these structures in a subpopulation of fluorescent spiny interneurons in the hippocampus of glutamic …

research product

The Polysialylated Form of the Neural Cell Adhesion Molecule (PSA-NCAM) Is Expressed in a Subpopulation of Mature Cortical Interneurons Characterized by Reduced Structural Features and Connectivity

Principal neurons in the adult cerebral cortex undergo synaptic, dendritic, and spine remodeling in response to different stimuli, and several reports have demonstrated that the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) participates in these plastic processes. However, there is only limited information on the expression of this molecule on interneurons and on its role in the structural plasticity of these cells. We have found that PSA-NCAM is expressed in mature interneurons widely distributed in all the extension of the cerebral cortex and have excluded the expression of this molecule in most principal cells. Although PSA-NCAM expression is generally considered a …

research product

Polysialic Acid Acute Depletion Induces Structural Plasticity in Interneurons and Impairs the Excitation/Inhibition Balance in Medial Prefrontal Cortex Organotypic Cultures

The structure and function of the medial prefrontal cortex (mPFC) is affected in several neuropsychiatric disorders, including schizophrenia and major depression. Recent studies suggest that imbalances between excitatory and inhibitory activity (E/I) may be responsible for this cortical dysfunction and, therefore, may underlie the core symptoms of these diseases. This E/I imbalance seems to be correlated with alterations in the plasticity of interneurons but there is still scarce information on the mechanisms that may link these phenomena. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate, because it modulates the neuronal plasticity of interneurons…

research product

Long-Term Behavioral Programming Induced by Peripuberty Stress in Rats Is Accompanied by GABAergic-Related Alterations in the Amygdala

Stress during childhood and adolescence is a risk factor for psychopathology. Alterations in γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain, have been found following stress exposure and fear experiences and are often implicated in anxiety and mood disorders. Abnormal amygdala functioning has also been detected following stress exposure and is also implicated in anxiety and social disorders. However, the amygdala is not a unitary structure; it includes several nuclei with different functions and little is known on the potential differences the impact of early life stress may have on this system within different amygdaloid nuclei. We aimed here to evaluate pote…

research product

Differential evolution of PSA-NCAM expression during aging of the rat telencephalon

Changes in the ability of neuronal networks to undergo structural remodeling may be involved in the age-associated cognitive decline. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) declines dramatically during postnatal development, but persists in several regions of the young-adult rat telencephalon, where it participates, through its anti-adhesive properties, in neuronal structural plasticity. However, PSA-NCAM expression during aging has only been studied in the dentate gyrus and the piriform cortex layer II, where it is strongly downregulated in adult (middle-aged) individuals. Using immunohistochemistry, we have observed that in most of the telencephalic areas …

research product

Effects of chronic fluoxetine treatment on the rat somatosensory cortex: Activation and induction of neuronal structural plasticity

Recent hypotheses support the idea that disruption of normal neuronal plasticity mechanisms underlies depression and other psychiatric disorders, and that antidepressant treatment may counteract these changes. In a previous report we found that chronic fluoxetine treatment increases the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule involved in neuronal structural plasticity, in the somatosensory cortex. In the present study we intended to find whether, in fact, cell activation and neuronal structural remodeling occur in parallel to changes in the expression of this molecule. Using immunohistochemistry, we found that chronic fluoxetine trea…

research product

A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood.

New neurons in the adult brain transiently express molecules related to neuronal development, such as the polysialylated form of neural cell adhesion molecule, or doublecortin (DCX). These molecules are also expressed by a cell population in the rat paleocortex layer II, whose origin, phenotype, and function are not clearly understood. We have classified most of these cells as a new cell type termed tangled cell. Some cells with the morphology of semilunar-pyramidal transitional neurons were also found among this population, as well as some scarce cells resembling semilunar, pyramidal. and fusiform neurons. We have found that none of these cells in layer II express markers of glial cells, m…

research product

The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons

N-Methyl-d-Aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play a key role in the structural plasticity of excitatory neurons, but to date little is known about their influence on the remodeling of interneurons. Among hippocampal interneurons, the somatostatin expressing cells in the CA1 stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change their density in response to different stimuli. In order to understand the role of NMDAR activation on the structural dynamics of the spines of somatostatin expressing interneurons in …

research product

Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mPFC of Adult Rats.

Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal n…

research product

Automated analysis of images for molecular quantification in immunohistochemistry.

The quantification of the expression of different molecules is a key question in both basic and applied sciences. While protein quantification through molecular techniques leads to the loss of spatial information and resolution, immunohistochemistry is usually associated with time-consuming image analysis and human bias. In addition, the scarce automatic software analysis is often proprietary and expensive and relies on a fixed threshold binarization. Here we describe and share a set of macros ready for automated fluorescence analysis of large batches of fixed tissue samples using FIJI/ImageJ. The quantification of the molecules of interest are based on an automatic threshold analysis of im…

research product

NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

N-methyl-D-aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to …

research product

PSA-NCAM expression in the human prefrontal cortex.

The prefrontal cortex (PFC) of adult rodents is capable of undergoing neuronal remodeling and neuroimaging studies in humans have revealed that the structure of this region also appears affected in different psychiatric disorders. However, the cellular mechanisms underlying this plasticity are still unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these structural changes through its anti-adhesive properties. PSA-NCAM participates in neurite outgrowth and synaptogenesis and changes in its expression occur parallel to neuronal remodeling in certain regions of the adult brain. PSA-NCAM is expressed in the hippocampus and temporal cortex of adult hum…

research product

Parvalbumin Interneurons and Perineuronal Nets in the Hippocampus and Retrosplenial Cortex of Adult Male Mice After Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment

Both early life aversive experiences and intrinsic alterations in early postnatal neurodevelopment are considered predisposing factors for psychiatric disorders, such as schizophrenia. The prefrontal cortex and the hippocampus have protracted postnatal development and are affected in schizophrenic patients. Interestingly, similar alterations have been observed in the retrosplenial cortex (RSC). Studies in patients and animal models of schizophrenia have found alterations in cortical parvalbumin (PV) expressing interneurons, making them good candidates to study the etiopathology of this disorder. Some of the alterations observed in PV+ interneurons may be mediated by perineuronal nets (PNNs)…

research product

Chronic antidepressant treatment induces contrasting patterns of synaptophysin and PSA-NCAM expression in different regions of the adult rat telencephalon.

Structural modifications occur in the brain of severely depressed patients and they can be reversed by antidepressant treatment. Some of these changes do not occur in the same direction in different regions, such as the medial prefrontal cortex, the hippocampus or the amygdala. Differential structural plasticity also occurs in animal models of depression and it is also prevented by antidepressants. In order to know whether chronic fluoxetine treatment induces differential neuronal structural plasticity in rats, we have analyzed the expression of synaptophysin, a protein considered a marker of synaptic density, and the expression of the polysialylated form of the neural cell adhesion molecul…

research product