6533b7defe1ef96bd1275c8c
RESEARCH PRODUCT
The TrkB agonist 7,8-dihydroxyflavone changes the structural dynamics of neocortical pyramidal neurons and improves object recognition in mice
Marta Perez-randoEsther Castillo-gómezEsther Castillo-gómezJuan NacherClara Bueno-fernandezsubject
0301 basic medicineMaleDendritic spineTrkB receptorNeocortexTropomyosin receptor kinase B78-Dihydroxyflavoneaxonal dynamicsMice0302 clinical medicineReceptorMembrane GlycoproteinsGeneral NeurosciencePyramidal CellsProtein-Tyrosine Kinases2-Photonbarrel cortexFemaleMicrogliaAnatomyAgonistHistologymedicine.drug_classDendritic SpinesMice TransgenicBiologyspine dynamicsrecognition memory03 medical and health sciencesBacterial ProteinsNeuroplasticitymedicinepyramidal neuronAnimalsMaze LearningParenchymal TissueRecognition memoryAnalysis of VarianceRecognition PsychologyBarrel cortexFlavonesAxonsLuminescent Proteins030104 developmental biologynervous systemAstrocytesen passant boutonsThy-1 AntigensNeuroscience030217 neurology & neurosurgerydescription
This is a pre-print of an article published in Brain Structure and Function. The final authenticated version is available online at: https://doi.org/10.1007/s00429-018-1637-x. BDNF and its receptor TrkB have important roles in neurodevelopment, neural plasticity, learning, and memory. Alterations in TrkB expression have been described in different CNS disorders. Therefore, drugs interacting with TrkB, specially agonists, are promising therapeutic tools. Among them, the recently described 7,8-dihydroxyflavone (DHF), an orally bioactive compound, has been successfully tested in animal models of these diseases. Recent studies have shown the influence of this drug on the structure of pyramidal neurons, specifically on dendritic spine density. However, there is no information yet on how DHF may alter the structural dynamics of these neurons (i.e., real-time study of the addition/elimination of dendritic spines and axonal boutons). To gain knowledge on these effects of DHF, we have performed a real-time analysis of spine and axonal dynamics in pyramidal neurons of barrel cortex, using cranial windows and 2-photon microscopy during a chronic oral treatment with this drug. After confirming TrkB expression in these neurons, we found that DHF increased the gain rates of spines and axonal boutons, as well as improved object recognition memory. These results help to understand how the activation of the BDNF-TrkB system can improve basic behavioral tasks through changes in the structural dynamics of pyramidal neurons. Moreover, they highlight DHF as a promising therapeutic vector for certain brain disorders in which this system is altered.
year | journal | country | edition | language |
---|---|---|---|---|
2018-03-02 |