6533b853fe1ef96bd12acdf7

RESEARCH PRODUCT

Reduced interneuronal dendritic arborization in CA1 but not in CA3 region of mice subjected to chronic mild stress

Javier Gilabert-juanEsther Castillo-gómezJuan NacherClara Bueno-fernandez

subject

0301 basic medicineMaleDendritic spineDendritic SpinesHippocampusPSA‐NCAMCell CountNeural Cell Adhesion Molecule L1Hippocampal formationBiologyNeurotransmissionAmygdalaHippocampus03 medical and health sciencesBehavioral NeuroscienceMice0302 clinical medicineInterneuronsNeuroplasticitymedicineAnimalsChronic stressCA1 Region HippocampalOriginal ResearchInhibitionNeuronal PlasticityGlutamate Decarboxylasemusculoskeletal neural and ocular physiologyfungiCA3 Region Hippocampalstructural plasticity030104 developmental biologymedicine.anatomical_structurenervous systemExcitatory postsynaptic potentialGAD67Sialic AcidsNeuroscience030217 neurology & neurosurgeryStress Psychological

description

Abstract Introduction Chronic stress induces dendritic atrophy and decreases spine density in excitatory hippocampal neurons, although there is also ample evidence indicating that the GABAergic system is altered in the hippocampus after this aversive experience. Chronic stress causes dendritic remodeling both in excitatory neurons and interneurons in the medial prefrontal cortex and the amygdala. Methods In order to know whether it also has an impact on the structure and neurotransmission of hippocampal interneurons, we have analyzed the dendritic arborization, spine density, and the expression of markers of inhibitory synapses and plasticity in the hippocampus of mice submitted to 21 days of mild restrain stress. The analyses were performed in GIN mice, a strain that displays EGFP‐labeled interneurons. Results We observed a significant decrease in the dendritic arborization of interneurons in the CA1 region, which did not occur in those in CA3. We found neither changes in dendritic spine density in these regions nor alterations in the number of EGFP‐positive interneurons. Nevertheless, the expression of glutamic acid decarboxylase 67 was reduced in different layers of CA1 and CA3 regions of the hippocampus. No significant changes were found in the expression of the polysialylated form of the neural cell adhesion molecule (PSA‐NCAM) or synaptophysin. Conclusions Chronic stress reduces the interneuronal dendritic arborization in CA1 region of the hippocampus but not in CA3.

10.1002/brb3.534http://europepmc.org/articles/PMC5318357