6533b7d8fe1ef96bd126a3ca

RESEARCH PRODUCT

Timing and spectral changes of the Be X-ray transient EXO 0531-6609.2 through high and low state

Tiziana Di SalvoGabriele CocozzaG. L. IsraelNanda ReaLuciano Burderi

subject

PhysicsRange (particle radiation)X-ray transientPhotonAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesFluxStatic timing analysisAstronomy and AstrophysicsAstrophysicsAstrophysicsLuminosityPulsarSpace and Planetary ScienceBlack-body radiationX-ray pulsars cyclotron line

description

We report on spectral and timing analysis of BeppoSAX data of the 13.6 s period transient X-ray pulsar EXO 0531-6609.2. Observations were carried out in March 1997 and October 1998, catching the source during a high and a low emission state, respectively. Correspondingly, the X-ray luminosity is found at a level of 4.2x10^37 erg/s and 1.5x10^36 erg/s in the two states. In the high state the X-ray emission in the energy range 1-100 keV is well fitted by an absorbed power-law with photon index Gamma ~1.7 plus a blackbody component with a characteristic temperature of ~3.5 keV. Moreover, we find an evidence of an iron emission at ~6.8 keV, typical feature in this class of sources but never revealed before in the EXO 0531-6609.2 spectrum. In the low state an absorbed power-law with Gamma ~0.4 is sufficient to fit the 1-10 keV data. During BeppoSAX observations EXO 0531-6609.2 display variations of the pulse profile with the X-ray flux: it showed single peaked and double peaked profiles in the low and high state, respectively. Based on these two observations we infer a spin-up period derivative of -(1.14+/-0.08)x10^-10 s/s. By comparing these with other period measurements reported in literature we find an alternating spin-up and spin-down behaviour that correlates well with the X-ray luminosity.

https://doi.org/10.1051/0004-6361:20035685