6533b7d8fe1ef96bd126a54b
RESEARCH PRODUCT
Duality of reduced density matrices and their eigenvalues
Christian SchillingRolf Schillingsubject
Statistics and ProbabilityPhysicsQuantum PhysicsIsotropyFOS: Physical sciencesGeneral Physics and AstronomyInverseDuality (optimization)Statistical and Nonlinear PhysicsHarmonic (mathematics)Mathematical Physics (math-ph)Quantum entanglementMathematics::Spectral Theory16. Peace & justiceModeling and SimulationReduced density matrixQuantum Physics (quant-ph)QuantumEigenvalues and eigenvectorsMathematical PhysicsMathematical physicsdescription
For states of quantum systems of N particles with harmonic interactions we prove that each reduced density matrix ρ obeys a duality condition. This condition implies duality relations for the eigenvalues λk of ρ and relates a harmonic model with length scales ${{\ell }_{1}},{{\ell }_{2}},\ldots ,{{\ell }_{N}}$ with another one with inverse lengths $1/{{\ell }_{1}},1/{{\ell }_{2}},\ldots ,1/{{\ell }_{N}}$. Entanglement entropies and correlation functions inherit duality from ρ. Self-duality can only occur for noninteracting particles in an isotropic harmonic trap.
year | journal | country | edition | language |
---|---|---|---|---|
2014-08-13 |