6533b7d8fe1ef96bd126ac41

RESEARCH PRODUCT

Preliminary biomarker and pharmacodynamic data from a phase I study of single-agent bispecific antibody T-cell engager GBR 1302 in subjects with HER2-positive cancers.

Eliel BayeverJohn S. KauhMartin WermkeJuergen AltJonathan BackYacine SalhiVenkateshwar ReddySebastian Ochsenreither

subject

0301 basic medicineOncologyCancer Researchmedicine.medical_specialtyBispecific antibodybusiness.industryT cellPhase i study03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureOncologyTolerability030220 oncology & carcinogenesisInternal medicinePharmacodynamicsmedicineBiomarker (medicine)Cytotoxic T cellSingle agentbusiness

description

69 Background: HER2 is overexpressed in many solid tumors and is a validated therapeutic target. GBR 1302 is a HER2xCD3 bispecific antibody engineered (using Glenmark’s BEAT® platform) to direct T-cells to HER2-expressing tumor cells. GBR1302-101 (NCT02829372) is an ongoing, multicenter, open-label, first-in-human study of GBR 1302 in subjects with HER2-positive cancers to evaluate the safety, tolerability, and preliminary efficacy of GBR 1302, and to elucidate the mechanism(s) by which it redirects T-cells to tumor and enhances cytolytic activity of cytotoxic T-cells. Methods: Adults with progressive HER2-positive solid tumors with no available standard or curative treatment receive intravenous GBR 1302 on Day 1 and Day 15 in 28-day treatment cycles at escalating dose levels, starting at 1 ng/kg. The first 4 cohorts consist of a single subject; subsequent cohorts enroll using a 3+3 design. The primary and secondary efficacy and safety endpoints of this trial will be reported at the end of the study. Preliminary pharmacodynamic (PD) data are reported for cellular biomarkers and cytokines as assessed by FACS and ELISA in peripheral blood. Results: Beginning at 30 ng/kg dosing of GBR 1302 (Cohort 4), numbers of peripheral blood CD3, CD4, and CD8 positive T-cell populations decreased within 6 hours of initiating administration, but recovered to levels at or above baseline by 48 hours. A parallel, transient increase was observed in peripheral blood cytokines (IL-2, IL-6, IL-10, IFN-γ, TNF-α). At doses greater than 30 ng/kg, more pronounced cytokine increases were observed, which normalized at 12 hours. At the highest dose level for which data are available (n = 8 subjects; Cohort 5), changes from baseline in cytokine expression at ~340 hours were greater by ~60-fold for IL-6, ~30-fold for IL-2, ~3-fold for IFN-γ, ~5-fold for TNF-α, and ~18-fold for IL-10. Two subjects treated at 100 ng/kg experienced Grade 1 cytokine release syndrome, evidenced by short-lived fever spikes. Dose escalation is ongoing. Conclusions: Preliminary PD data indicate changes in peripheral T-cell populations and inflammatory cytokines following GBR 1302 treatment. Clinical trial information: NCT02829372.

https://doi.org/10.1200/jco.2018.36.5_suppl.69