6533b7d8fe1ef96bd126af66

RESEARCH PRODUCT

Linear extension operators on products of compact spaces

Jose L. Blasco

subject

Pure mathematicsAlexandroff compactificationLinear extensionMathematical analysisLinear extension operatorProduct topologyGeometry and TopologyLocally compact spaceProduct spaceSpace (mathematics)Mathematics

description

Abstract Let X and Y be the Alexandroff compactifications of the locally compact spaces X and Y , respectively. Denote by Σ( X × Y ) the space of all linear extension operators from C(( X × Y )⧹(X×Y)) to C(( X × Y )) . We prove that X and Y are σ -compact spaces if and only if there exists a T∈Σ( X × Y ) with ‖ T ‖ Γ∈Σ( X × Y ) with ‖ Γ ‖=1. Assuming the existence of a T∈Σ( X × Y ) with ‖ T ‖ X and Y is equivalent to the fact that ‖ Γ ‖⩾2 for every Γ∈Σ( X × Y ) .

10.1016/s0166-8641(02)00374-7http://dx.doi.org/10.1016/S0166-8641(02)00374-7