6533b7d8fe1ef96bd126b70d

RESEARCH PRODUCT

A prospect for computing in porous materials research: Very large fluid flow simulations

Keijo MattilaKeijo MattilaTuomas TurpeinenJussi TimonenFredrik RobertsénTuomas PuurtinenMarkko MyllysRodrigo SurmasJari HyväluomaJan Westerholm

subject

General Computer ScienceComputer scienceLattice Boltzmann method0208 environmental biotechnologyGPULattice Boltzmann methods02 engineering and technologyParallel computing01 natural sciencesPermeability010305 fluids & plasmasTheoretical Computer ScienceComputational sciencePorous materialPetascale computing0103 physical sciencesFluid dynamicsFluid flow simulationPorosityta113ta114Supercomputer020801 environmental engineeringAddressing modePermeability (earth sciences)Petascale computingModeling and SimulationPorous medium

description

Abstract Properties of porous materials, abundant both in nature and industry, have broad influences on societies via, e.g. oil recovery, erosion, and propagation of pollutants. The internal structure of many porous materials involves multiple scales which hinders research on the relation between structure and transport properties: typically laboratory experiments cannot distinguish contributions from individual scales while computer simulations cannot capture multiple scales due to limited capabilities. Thus the question arises how large domain sizes can in fact be simulated with modern computers. This question is here addressed using a realistic test case; it is demonstrated that current computing capabilities allow the direct pore-scale simulation of fluid flow in porous materials using system sizes far beyond what has been previously reported. The achieved system sizes allow the closing of some particular scale gaps in, e.g. soil and petroleum rock research. Specifically, a full steady-state fluid flow simulation in a porous material, represented with an unprecedented resolution for the given sample size, is reported: the simulation is executed on a CPU-based supercomputer and the 3D geometry involves 16,384 3 lattice cells (around 590 billion of them are pore sites). Using half of this sample in a benchmark simulation on a GPU-based system, a sustained computational performance of 1.77 PFLOPS is observed. These advances expose new opportunities in porous materials research. The implementation techniques here utilized are standard except for the tailored high-performance data layouts as well as the indirect addressing scheme with a low memory overhead and the truly asynchronous data communication scheme in the case of CPU and GPU code versions, respectively.

https://doi.org/10.1016/j.jocs.2015.11.013