6533b7d8fe1ef96bd126b75c

RESEARCH PRODUCT

On the study of the vibrational energy levels of Arsine molecule

Elena Sergeevna BekhterevaO.n. UlenikovClaude LeroyN. SanzharovN. Sanzharov

subject

Unitary group approachVibrational energy[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]02 engineering and technology01 natural sciencesHot bandchemistry.chemical_compoundArsine[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Normal mode0103 physical sciencesMolecular symmetryMoleculePhysical and Theoretical Chemistry010306 general physicsSpectroscopyPhysicsVibrational excitationsLocal modeNormal mode021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsVibrationchemistryMolecular vibrationAsH3Atomic physics0210 nano-technology

description

Abstract We compare two formalisms applied to the vibrational modes of the molecule of AsH 3 of C 3 v molecular symmetry group. Indeed, the close stretching modes of this molecule may be considered as those of a three-dimensional oscillator whereas the bending modes may be considered either as a one-dimensional oscillator of symmetry A 1 and a two-dimensional oscillator of symmetry E or as an approximate three-dimensional oscillator. So, we have applied the U ( p  + 1) formalism to the both stretching and bending modes and introduced coupling terms acting on an appropriate coupled vibrational basis through a local mode formalism. We have then compared the result of our fitting with those obtained with the coupling of a local mode formalism adapted to the stretching vibrations with a normal mode formalism for the bending ones. Finally we compare our results with other methods recently proposed in the literature.

10.1016/j.jms.2007.10.007https://hal.archives-ouvertes.fr/hal-00448938