6533b7d9fe1ef96bd126b963

RESEARCH PRODUCT

Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits.

Eva MiedesEster P. LorencesJesús Muñoz-bertomeu

subject

0106 biological sciencesEthylenePhysiologyPlant ScienceBiologyTransglucosylation and xyloglucan01 natural sciencesCell wall03 medical and health scienceschemistry.chemical_compoundSolanum lycopersicumPlant Growth RegulatorsGene Expression Regulation PlantGene expressionBIOQUIMICA Y BIOLOGIA MOLECULARGenePhylogeny030304 developmental biology2. Zero hunger0303 health sciencesSequence Homology Amino AcidCell wallAgriculturaGlycosyltransferasesfood and beveragesRipeningSequence Analysis DNAXyloglucan endotransglucosylaseEthylenesFruit ripeningXyloglucanMalus domesticachemistryBiochemistryFruitMalusClimactericAgronomy and Crop Science010606 plant biology & botany

description

[EN] Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTHS and SlXTHS from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTHS and SlXTHS). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested. (C) 2013 Elsevier GmbH. All rights reserved.

http://oa.upm.es/29010/