Search results for "Glycosyltransferases"

showing 10 items of 12 documents

Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits.

2013

[EN] Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 Sl…

0106 biological sciencesEthylenePhysiologyPlant ScienceBiologyTransglucosylation and xyloglucan01 natural sciencesCell wall03 medical and health scienceschemistry.chemical_compoundSolanum lycopersicumPlant Growth RegulatorsGene Expression Regulation PlantGene expressionBIOQUIMICA Y BIOLOGIA MOLECULARGenePhylogeny030304 developmental biology2. Zero hunger0303 health sciencesSequence Homology Amino AcidCell wallAgriculturaGlycosyltransferasesfood and beveragesRipeningSequence Analysis DNAXyloglucan endotransglucosylaseEthylenesFruit ripeningXyloglucanMalus domesticachemistryBiochemistryFruitMalusClimactericAgronomy and Crop Science010606 plant biology & botany
researchProduct

Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls.

2013

Abstract: Growth and biomechanics of etiolated hypocotyls from Arabidopsis thaliana lines overexpressing xyloglucan endotransglucosylase/hydrolase AtXTH18, AtXTH19, AtXTH20, and PttXET16-34 were studied. Overexpression of AtXTH18, AtXTH19, and AtXTH20 stimulated growth of hypocotyls, while PttXET16-34 overexpression did not show this effect. In vitro extension of frozen/thawed hypocotyls measured by a constant-load extensiometer started from a high-amplitude initial deformation followed by a slow time-dependent creep. Creep of growing XTH-overexpressing (OE) hypocotyls was more linear in time compared with the wild type at pH 5.0, reflecting their higher potential for long-term extension. X…

0106 biological sciencesPhysiologyArabidopsisPlant ScienceBiologyReal-Time Polymerase Chain Reaction01 natural sciencesHypocotylCell wall03 medical and health sciencesCell WallGene Expression Regulation PlantTensile StrengthArabidopsisArabidopsis thalianaXyloglucan:xyloglucosyl transferaseBiology030304 developmental biology0303 health sciencesAgriculturafungiWild typeGlycosyltransferasesfood and beveragesXyloglucan endotransglucosylasebiology.organism_classificationHypocotylBiochemistryEtiolationBiophysics010606 plant biology & botany
researchProduct

Xyloglucan endotransglucosylase and cell wall extensibility

2011

Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl…

0106 biological sciencesPhysiologyBiologíaPlant ScienceBiologyPolysaccharidePolymerase Chain Reaction01 natural sciencesHypocotylCell wall03 medical and health scienceschemistry.chemical_compoundTransformation GeneticSolanum lycopersicumCell WallSpectroscopy Fourier Transform InfraredXyloglucan:xyloglucosyl transferaseGenetically modified tomatoPlant Proteins030304 developmental biologychemistry.chemical_classification0303 health sciencesfungiWild typeGlycosyltransferasesfood and beveragesXyloglucan endotransglucosylaseBlotting NorthernXyloglucanchemistryBiochemistrySpectrometry Mass Matrix-Assisted Laser Desorption-IonizationAgronomy and Crop Science010606 plant biology & botany
researchProduct

Large clostridial cytotoxins — a family of glycosyltransferases modifying small GTP-binding proteins

1996

Some Clostridium species produce AB x -type protein cytotoxins of high molecular weight. These toxins constitute the group of large clostridial cytotoxins (LCTs), which have homologous protein sequences, exert glycosyltransferase activity and modify GTP-binding proteins of the Ras-superfamily. These characteristics render the LCTs valuable tools for developmental and cell biologists.

ClostridiumMicrobiology (medical)Clostridium speciesMicrobial toxinsCytotoxinsBacterial ToxinsCellGlycosyltransferasesProtein superfamilyBiologyGlycosyltransferase activityMicrobiologyInfectious DiseasesGTP-binding protein regulatorsmedicine.anatomical_structureBiochemistryVirologyGlycosyltransferaseras Proteinsbiology.proteinmedicineCytotoxicityTrends in Microbiology
researchProduct

The glycosyltransferase activities of lysyl hydroxylase 3 (LH3) in the extracellular space are important for cell growth and viability.

2008

Abstract Lysyl hydroxylase (LH) isoform 3 is a post-translational enzyme possessing LH, collagen galactosyltransferase (GT) and glucosyltransferase (GGT) activities. We have demonstrated that LH3 is found not only intracellularly, but also on the cell surface and in the extracellular space, suggesting additional functions for LH3. Here we show that the targeted disruption of LH3 by siRNA causes a marked reduction of both glycosyltransferase activities, and the overexpression of LH3 in HT-1080 cells increases hydroxylation of lysyl residues and the subsequent galactosylation and glucosylation of hydroxylysyl residues. These data confirm the multi-functionality of LH3 in cells. Furthermore, t…

DNA ComplementaryGlycosylationCell SurvivalLysyl hydroxylaseCellhydroxylysyl glycosylationFluorescent Antibody Techniquelysyl hydroxylaseMicrotubulesPermeabilityCell LineGlycosyltransferasemedicineExtracellularAnimalsHumanscell growthViability assayRNA Small InterferingCell Shapecell viabilityCell ProliferationbiologyCell DeathCell growthProcollagen-Lysine 2-Oxoglutarate 5-Dioxygenasecollagen biosynthesisGlycosyltransferasesCell BiologyArticlesGalactosyltransferasesMolecular biologyPeptide FragmentsCulture MediaActin Cytoskeletonmedicine.anatomical_structurepost-translational modificationCell culturebiology.proteinMolecular MedicineGlucosyltransferaseExtracellular Spacehydroxylysyl glycosyltransferaseJournal of cellular and molecular medicine
researchProduct

Arbutin synthase, a novel member of the NRD1β glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and …

2002

Plant glucosyltransferases (GTs) play a crucial role in natural product biosynthesis and metabolization of xenobiotics. We expressed the arbutin synthase (AS) cDNA from Rauvolfia serpentina cell suspension cultures in Escherichia coli with a 6 x His tag and purified the active enzyme to homogeneity. The recombinant enzyme had a temperature optimum of 50 degrees C and showed two different pH optima (4.5 and 6.8 or 7.5, depending on the buffer). Out of 74 natural and synthetic phenols and two cinnamyl alcohols tested as substrates for the AS, 45 were accepted, covering a broad range of structural features. Converting rates comparable to hydroquinone were not achieved. In contrast to this broa…

DNA ComplementaryStereochemistryMolecular Sequence DataClinical BiochemistryPharmaceutical ScienceBiochemistryRauwolfiaSubstrate SpecificityXenobioticschemistry.chemical_compoundGlucosyltransferasesBiosynthesisMultienzyme ComplexesDrug DiscoveryGlycosyltransferaseGlycosylAmino Acid SequenceCloning MolecularMolecular BiologyPhylogenychemistry.chemical_classificationBiological ProductsBase SequenceSequence Homology Amino AcidbiologyOrganic ChemistryArbutinArbutinTemperatureGlycosyltransferasesSubstrate (chemistry)Hydrogen-Ion ConcentrationRecombinant ProteinsKineticsEnzymeBiochemistrychemistrybiology.proteinMolecular MedicineGlucosyltransferaseSequence AlignmentBioorganic & Medicinal Chemistry
researchProduct

The Implication of Xyloglucan Endotransglucosylase/Hydrolase (XTHs) in Tomato Fruit Infection by Penicillium expansum Link. A

2007

In general, cell wall-degrading enzymes produced by plant pathogenic fungi are considered important pathogenicity factors. In this work, we evaluate the implication of xyloglucan endotransglucosylase/ hydrolase (XTHs), a potential hemicellulosic repairing enzyme, in the infection mechanism process by the fungus. This study investigated the SIXTHS expresion and xyloglucan endotransglucosylase (XET) activity during infection of two tomato fruit cultivars by Penicillium expansum Link. A. In infected fruits, XET specific activity decreased drastically after long infection periods, 24 and 48 h for Canario and Money Maker tomato fruits, respectively. Real Time RT-PCR of eleven SIXTHS also showed …

DNA PlantArabidopsisGene ExpressionFungusMicrobiologyCell wallchemistry.chemical_compoundSolanum lycopersicumLegumePlant DiseasesbiologyfungiPenicilliumGlycosyltransferasesfood and beveragesGeneral ChemistryFungi imperfectiXyloglucan endotransglucosylasebiology.organism_classificationXyloglucanchemistryBiochemistryFruitPenicillium expansumGeneral Agricultural and Biological SciencesSequence AlignmentSolanaceaeJournal of Agricultural and Food Chemistry
researchProduct

Probing suggested catalytic domains of glycosyltransferases by site-directed mutagenesis.

2003

The plant enzyme arbutin synthase isolated from cell suspension cultures of Rauvolfia serpentina and heterologously expressed in Escherichia coli is a member of the NRD1beta family of glycosyltransferases. This enzyme was used to prove, by site-directed mutagenesis, suggested catalytic domains and reaction mechanisms proposed for enzyme-catalyzed glycosylation. Replacement of amino acids far from the NRD domain do not significantly affect arbutin synthase activity. Exchange of amino acids at the NRD site leads to a decrease of enzymatic activity, e.g. substitution of Glu368 by Asp. Glu368, which is a conserved amino acid in glycosyltransferases located at position 2 and is important for enz…

GlycosylationStereochemistryMolecular Sequence DataBiologyBiochemistryPolymerase Chain ReactionGene Expression Regulation EnzymologicRauwolfiaSubstrate Specificitychemistry.chemical_compoundCatalytic DomainGlycosyltransferaseEscherichia coliAmino Acid SequenceSite-directed mutagenesisConserved SequenceDNA Primerschemistry.chemical_classificationBinding SitesATP synthaseSequence Homology Amino AcidMutagenesisArbutinGlycosyltransferasesEnzyme assayRecombinant ProteinsAmino acidEnzymechemistryBiochemistryAmino Acid Substitutionbiology.proteinMutagenesis Site-DirectedEuropean journal of biochemistry
researchProduct

Diagnostic strategy in segmentation defect of the vertebrae: a retrospective study of 73 patients

2018

BackgroundSegmentation defects of the vertebrae (SDV) are non-specific features found in various syndromes. The molecular bases of SDV are not fully elucidated due to the wide range of phenotypes and classification issues. The genes involved are in the Notch signalling pathway, which is a key system in somitogenesis. Here we report on mutations identified in a diagnosis cohort of SDV. We focused on spondylocostal dysostosis (SCD) and the phenotype of these patients in order to establish a diagnostic strategy when confronted with SDV.Patients and methodsWe used DNA samples from a cohort of 73 patients and performed targeted sequencing of the five known SCD-causing genes (DLL3,MESP2,LFNG,HES7…

Male0301 basic medicineOncologymedicine.medical_specialtyCandidate geneAdolescent030105 genetics & heredityspondylocostal dysostosisdiagnostic strategysegmentation defect of the vertebraewhole exome sequencingLFNG03 medical and health sciencesgene panelInternal medicineExome SequencingBasic Helix-Loop-Helix Transcription FactorsGeneticsmedicineHumansFLNBChildGenetics (clinical)Exome sequencingBone Diseases Developmentalbusiness.industryIntracellular Signaling Peptides and ProteinsGlycosyltransferasesInfantMembrane ProteinsRetrospective cohort studymedicine.diseasePhenotypeSpineSpondylocostal dysostosisPedigreePhenotype[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsChild PreschoolMutationCohortFemaleT-Box Domain Proteinsbusiness
researchProduct

Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats.

2013

International audience; A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat …

MaleAnatomy and Physiology[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionSensory PhysiologyEnzyme Metabolismlcsh:MedicineQuinolonesBiochemistryCarboxylesterasechemistry.chemical_compoundPentanols0302 clinical medicineCoumarinsEnzyme Inhibitorslcsh:Sciencechemistry.chemical_classification0303 health sciencesMultidisciplinaryEnzyme ClassesEsterasesSensory SystemsEnzymes3. Good healthElectrophysiologyProtein Transportmedicine.anatomical_structureBiochemistryMedicineSensory PerceptionMetabolic PathwaysResearch ArticleIsoamyl acetateBiologyNeurological SystemXenobiotics03 medical and health sciencesOlfactory mucosaOlfactory MucosaTransferasesmedicineAnimalsRats WistarBiology030304 developmental biologyOlfactory Systemlcsh:RGlycosyltransferasesCytochrome P450MonooxygenaseOlfactory PerceptionRatsMetabolismEnzymechemistryOdorantsBiocatalysisbiology.proteinlcsh:Q[SDV.AEN]Life Sciences [q-bio]/Food and NutritionOlfactory epithelium030217 neurology & neurosurgeryDrug metabolismNeuroscience
researchProduct