6533b7ddfe1ef96bd127499f

RESEARCH PRODUCT

Arbutin synthase, a novel member of the NRD1β glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics

Tobias HefnerKarsten SiemsHeribert WarzechaJoachim ArendJoachim Stöckigt

subject

DNA ComplementaryStereochemistryMolecular Sequence DataClinical BiochemistryPharmaceutical ScienceBiochemistryRauwolfiaSubstrate SpecificityXenobioticschemistry.chemical_compoundGlucosyltransferasesBiosynthesisMultienzyme ComplexesDrug DiscoveryGlycosyltransferaseGlycosylAmino Acid SequenceCloning MolecularMolecular BiologyPhylogenychemistry.chemical_classificationBiological ProductsBase SequenceSequence Homology Amino AcidbiologyOrganic ChemistryArbutinArbutinTemperatureGlycosyltransferasesSubstrate (chemistry)Hydrogen-Ion ConcentrationRecombinant ProteinsKineticsEnzymeBiochemistrychemistrybiology.proteinMolecular MedicineGlucosyltransferaseSequence Alignment

description

Plant glucosyltransferases (GTs) play a crucial role in natural product biosynthesis and metabolization of xenobiotics. We expressed the arbutin synthase (AS) cDNA from Rauvolfia serpentina cell suspension cultures in Escherichia coli with a 6 x His tag and purified the active enzyme to homogeneity. The recombinant enzyme had a temperature optimum of 50 degrees C and showed two different pH optima (4.5 and 6.8 or 7.5, depending on the buffer). Out of 74 natural and synthetic phenols and two cinnamyl alcohols tested as substrates for the AS, 45 were accepted, covering a broad range of structural features. Converting rates comparable to hydroquinone were not achieved. In contrast to this broad acceptor substrate specificity, only pyrimidine nucleotide activated glucose was tolerated as a donor substrate. Nucleotide and amino acid sequence analysis revealed AS to be a new member of the NRD1beta family of glycosyl transferases and placed the enzyme into the group of plant secondary product GTs. Arbutin synthase is therefore the first example of a broad spectrum multifunctional glucosyltransferase.

https://doi.org/10.1016/s0968-0896(02)00029-9