Search results for "Glycosyl"

showing 10 items of 317 documents

Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives

2016

The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold hig…

0106 biological sciences0301 basic medicineGlycosylationGlycosylationStereochemistryRutinAmino Acid Motifs01 natural sciencesApplied Microbiology and BiotechnologySubstrate Specificity03 medical and health sciencesRutinchemistry.chemical_compoundAmylosucraseGlucosyltransferasesBacterial Proteins010608 biotechnologyDeinococcusBinding siteBinding SitesbiologyGeneral Medicinebiology.organism_classificationAcceptorMolecular Docking SimulationKinetics030104 developmental biologyAglyconechemistryGlucosyltransferasesbiology.proteinDeinococcusBiotechnologyJournal of Microbiology and Biotechnology
researchProduct

GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth

2016

What are the most abundant sphingolipids on earth? The answer is Glycosyl Inositol Phosphoryl Ceramides (GIPCs) present in fungi and the green lineage. In this review, we discuss the putative role of plant GIPCs in the lipid bilayer asymmetry, in the lateral organization of membrane rafts and in the very long chain fatty acid inter-leaflet coupling of lipids in the plant plasma membrane (PM). A special focus on the structural similarities -and putative functions- of GIPCs is discussed by comparison with animal gangliosides, structural homologs of plant GIPCs.

0106 biological sciences0301 basic medicineGlycosylationGlycosylationVery long chain fatty acidPlant ScienceBiologyCeramidesModels Biological01 natural sciencesCell wall03 medical and health scienceschemistry.chemical_compoundMembrane MicrodomainsPlant defense against herbivoryAnimalsGlycosylInositolLipid bilayerSphingolipidsMini-ReviewPlantsSphingolipid030104 developmental biologychemistryBiochemistrylipids (amino acids peptides and proteins)010606 plant biology & botanyPlant Signaling & Behavior
researchProduct

First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role.

2018

The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functio…

0106 biological sciences0301 basic medicinePhysiologyGlycosylasesWaspsVenomLaccasesHymenopteraInsectmelanization01 natural sciencesvirulence factorParasitoidTranscriptomePhysiological suppressionLaboratory of EntomologyArthropod Venomsmedia_commonLarvabiologyVirulence factorsPhenotypeNezara viridulalaccazesInsect ProteinsFemaleMelanizationmedia_common.quotation_subjectZoologycomplex mixturesHost-Parasite InteractionsHeteroptera03 medical and health sciencesglycosylasesExocrine GlandsMicroscopy Electron TransmissionAnimalsPeptidaseHost (biology)Laccasefungibiology.organism_classificationLaboratorium voor Entomologiephysiological suppression010602 entomology030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicatapeptidasesInsect ScienceEPS[SDE.BE]Environmental Sciences/Biodiversity and EcologyPeptidasesTranscriptomeGlycosylaseJournal of insect physiology
researchProduct

Purification, characterization and influence on membrane properties of the plant-specific sphingolipids GIPC

2020

AbstractThe plant plasma membrane (PM) is an essential barrier between the cell and the external environment. The PM is crucial for signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols and phospholipids. The most abundant sphingolipids in the plant PM are the Glycosyl Inositol Phosphoryl Ceramides (GIPCs), representing up to 40% of total sphingolipids, assumed to be almost exclusively in the outer leaflet of the PM. In this study, we investigated the structure of GIPCs and their role in membrane organization. Since GIPCs are not commercially available, we developed a protocol to extract and isolate …

0106 biological sciences0303 health sciencesGlycanbiology[SDV]Life Sciences [q-bio]Conjugated system01 natural sciencesSphingolipid[SDV] Life Sciences [q-bio]03 medical and health scienceschemistry.chemical_compoundMembranechemistryBiochemistryMonolayerbiology.proteinlipids (amino acids peptides and proteins)GlycosylInositolLipid bilayer030304 developmental biology010606 plant biology & botany
researchProduct

Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits.

2013

[EN] Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 Sl…

0106 biological sciencesEthylenePhysiologyPlant ScienceBiologyTransglucosylation and xyloglucan01 natural sciencesCell wall03 medical and health scienceschemistry.chemical_compoundSolanum lycopersicumPlant Growth RegulatorsGene Expression Regulation PlantGene expressionBIOQUIMICA Y BIOLOGIA MOLECULARGenePhylogeny030304 developmental biology2. Zero hunger0303 health sciencesSequence Homology Amino AcidCell wallAgriculturaGlycosyltransferasesfood and beveragesRipeningSequence Analysis DNAXyloglucan endotransglucosylaseEthylenesFruit ripeningXyloglucanMalus domesticachemistryBiochemistryFruitMalusClimactericAgronomy and Crop Science010606 plant biology & botany
researchProduct

p24 Family Proteins Are Involved in Transport to the Plasma Membrane of GPI-Anchored Proteins in Plants

2020

p24 proteins are a family of type-I membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi apparatus via Coat Protein I (COPI)- and COPII-coated vesicles. These proteins have been proposed to function as cargo receptors, but the identity of putative cargos in plants is still elusive. We previously generated an Arabidopsis (Arabidopsis thaliana) quadruple loss-of-function mutant affecting p24 genes from the δ-1 subclass of the p24 delta subfamily (p24δ3δ4δ5δ6 mutant). This mutant also had reduced protein levels of other p24 family proteins and was found to be sensitive to salt stress. Here, we used this mutant to test the possible involvement of p24 proteins in the…

0106 biological sciencesGenotypePhysiologyGlycosylphosphatidylinositolsMutantArabidopsisGolgi ApparatusPlant ScienceEndoplasmic Reticulum01 natural sciencessymbols.namesakeArabidopsisGeneticsArabidopsis thalianaResearch ArticlesbiologyChemistryArabidopsis ProteinsVesicleEndoplasmic reticulumCell MembraneGenetic VariationMembrane ProteinsCOPIGolgi apparatusbiology.organism_classificationCell biologyProtein TransportMembrane proteinMutationsymbols010606 plant biology & botany
researchProduct

Changes in lipid composition in tobacco cells treated with cryptogein , an elicitor from Phytophthora cryptogea

1995

Abstract Changes in lipid composition occurred when tobacco cells (Nicotiana tabacum var. Xanthi) were treated with cryptogein, a proteinaceous elicitor from Phytophthora cryptogea. The most striking change was an increase in acylated steryl glycosides and steryl esters levels, certainly resulting from the glycosylation and/or esterification of free sterols. Moreover, in vivo pulse-labelling experiments with [14C]acetate also showed that a progressive decline in the incorporation rate of [14C]acetate into free sterols started with the induction of sesquiterpenoid synthesis and lasted when sesquiterpenoid synthesis stops. This phenomenon was accompanied by a significant increase in the synth…

0106 biological sciencesGlycosylationNicotiana tabacumPlant Science01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health scienceschemistry.chemical_compoundBiosynthesis[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classificationPhosphatidylethanolamine0303 health sciencesbiologyPhytophthora cryptogeaPhytoalexinGlycosideGeneral Medicinebiology.organism_classification3. Good healthElicitorchemistryBiochemistrylipids (amino acids peptides and proteins)Agronomy and Crop Science010606 plant biology & botany
researchProduct

Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls.

2013

Abstract: Growth and biomechanics of etiolated hypocotyls from Arabidopsis thaliana lines overexpressing xyloglucan endotransglucosylase/hydrolase AtXTH18, AtXTH19, AtXTH20, and PttXET16-34 were studied. Overexpression of AtXTH18, AtXTH19, and AtXTH20 stimulated growth of hypocotyls, while PttXET16-34 overexpression did not show this effect. In vitro extension of frozen/thawed hypocotyls measured by a constant-load extensiometer started from a high-amplitude initial deformation followed by a slow time-dependent creep. Creep of growing XTH-overexpressing (OE) hypocotyls was more linear in time compared with the wild type at pH 5.0, reflecting their higher potential for long-term extension. X…

0106 biological sciencesPhysiologyArabidopsisPlant ScienceBiologyReal-Time Polymerase Chain Reaction01 natural sciencesHypocotylCell wall03 medical and health sciencesCell WallGene Expression Regulation PlantTensile StrengthArabidopsisArabidopsis thalianaXyloglucan:xyloglucosyl transferaseBiology030304 developmental biology0303 health sciencesAgriculturafungiWild typeGlycosyltransferasesfood and beveragesXyloglucan endotransglucosylasebiology.organism_classificationHypocotylBiochemistryEtiolationBiophysics010606 plant biology & botany
researchProduct

Xyloglucan endotransglucosylase and cell wall extensibility

2011

Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl…

0106 biological sciencesPhysiologyBiologíaPlant ScienceBiologyPolysaccharidePolymerase Chain Reaction01 natural sciencesHypocotylCell wall03 medical and health scienceschemistry.chemical_compoundTransformation GeneticSolanum lycopersicumCell WallSpectroscopy Fourier Transform InfraredXyloglucan:xyloglucosyl transferaseGenetically modified tomatoPlant Proteins030304 developmental biologychemistry.chemical_classification0303 health sciencesfungiWild typeGlycosyltransferasesfood and beveragesXyloglucan endotransglucosylaseBlotting NorthernXyloglucanchemistryBiochemistrySpectrometry Mass Matrix-Assisted Laser Desorption-IonizationAgronomy and Crop Science010606 plant biology & botany
researchProduct

Evaluation of an amino acid residue critical for the specificity and activity of human Gb3/CD77 synthase

2016

Human Gb3/CD77 synthase (α1,4-galactosyltransferase) is the only known glycosyltransferase that changes acceptor specificity because of a point mutation. The enzyme, encoded by A4GALT locus, is responsible for biosynthesis of Gal(α1–4)Gal moiety in Gb3 (CD77, Pk antigen) and P1 glycosphingolipids. We showed before that a single nucleotide substitution c.631C > G in the open reading frame of A4GALT, resulting in replacement of glutamine with glutamic acid at position 211 (substitution p. Q211E), broadens the enzyme acceptor specificity, so it can not only attach galactose to another galactose but also to N-acetylgalactosamine. The latter reaction leads to synthesis of NOR antigens, which are…

0301 basic medicineAcetylgalactosamineMutation MissenseBiochemistryGlycosphingolipidsSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundGb3/CD77 synthaseBiosynthesisCell Line TumorGlycosyltransferaseAspartic acidHumansAsparagineSite-directed mutagenesisMolecular BiologySite-directed mutagenesisbiologyAntigens NuclearGlutamic acidCell BiologyGalactosyltransferasesMolecular biologyEnzyme assayGlutamineP1PK blood group system030104 developmental biologyAmino Acid SubstitutionBiochemistrychemistryGlycopshingolipidsbiology.proteinNOR polyagglutinationOriginal ArticleGlycoconjugate Journal
researchProduct