6533b7d9fe1ef96bd126b9cc

RESEARCH PRODUCT

Existence of common zeros for commuting vector fields on 3‐manifolds II. Solving global difficulties

Bruno SantiagoChristian BonattiSébastien Alvarez

subject

Pure mathematicsConjectureGeneral Mathematics37C85010102 general mathematicsZero (complex analysis)Boundary (topology)Field (mathematics)Dynamical Systems (math.DS)01 natural sciences37C25Flow (mathematics)Relatively compact subspace0103 physical sciences58C30 (primary)FOS: MathematicsVector field010307 mathematical physics0101 mathematicsInvariant (mathematics)Mathematics - Dynamical Systems[MATH]Mathematics [math]57S05Mathematics

description

We address the following conjecture about the existence of common zeros for commuting vector fields in dimension three: if $X,Y$ are two $C^1$ commuting vector fields on a $3$-manifold $M$, and $U$ is a relatively compact open such that $X$ does not vanish on the boundary of $U$ and has a non vanishing Poincar\'e-Hopf index in $U$, then $X$ and $Y$ have a common zero inside $U$. We prove this conjecture when $X$ and $Y$ are of class $C^3$ and every periodic orbit of $Y$ along which $X$ and $Y$ are collinear is partially hyperbolic. We also prove the conjecture, still in the $C^3$ setting, assuming that the flow $Y$ leaves invariant a transverse plane field. These results shed new light on the $C^3$ case of the conjecture.

10.1112/plms.12342https://hal.archives-ouvertes.fr/hal-03036013