6533b7d9fe1ef96bd126c4a6

RESEARCH PRODUCT

An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: Evaluation of antimicrobial and chemoattractant properties.

Giovanna PitarresiFabio Salvatore PalumboDomenico SchillaciCalogero FioricaGaetano GiammonaSalvatore FedericoValentina Catania

subject

Materials sciencePolyurethanesNanofibersBioengineeringmacromolecular substances02 engineering and technologyChemotaxis (FGF-2)Antimicrobial activity (CPX); Chemotaxis (FGF-2); Double layer electrospun membrane; Gellan gum alkyl-derivative; Polyurethanes010402 general chemistry01 natural sciencesPolyvinyl alcoholGellan gum alkyl-derivativeBiomaterialschemistry.chemical_compoundAnti-Infective AgentsCiprofloxacinCopolymerDouble layer electrospun membraneChemotactic Factorstechnology industry and agriculture021001 nanoscience & nanotechnologyAntimicrobialControlled releaseBandagesGellan gumElectrospinning0104 chemical sciencesAnti-Bacterial AgentsAntimicrobial activity (CPX)MembranechemistryMechanics of MaterialsSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoDelayed-Action PreparationsBiophysicsFibroblast Growth Factor 20210 nano-technologyLayer (electronics)

description

Here, an asymmetric double-layer membrane has been designed and fabricated by electrospinning as a tool for a potential wound healing application. A hydrophobic layer has been produced by using a polyurethane-polycaprolactone (PU-PCL) copolymer and loaded with the antibacterial ciprofloxacin whereas an ion responsive hydrophilic layer has been produced by using an octyl derivative of gellan gum (GG-C8) and polyvinyl alcohol (PVA) and loaded with the growth factor FGF-2. This study investigated how the properties of this asymmetric membrane loaded with actives, were influenced by the ionotropic crosslinking of the hydrophilic layer. In particular, the treatment in DPBS and the crosslinking in CaCl2 0.1 or 1 M of the hydrophilic layer affected the release profile of the bioactive molecules allowing to modulate both the antimicrobial effect, as assayed by logarithmic reduction of the Staphylococcus aureus viable count, and the chemoattractant properties on NIH 3 T3 cell line, as assayed by scratch test and cell chemoattraction assay. © 2021 Elsevier B.V.

10.1016/j.msec.2021.112001https://pubmed.ncbi.nlm.nih.gov/33812621