0000000000200115

AUTHOR

Salvatore Federico

0000-0001-9185-4041

Effect of alkyl derivatization of gellan gum during the fabrication of electrospun membranes

Electrospun nanofibers based on polysaccharides represent a consolidated approach in Tissue Engineering and Regenerative Medicine (TERM) and nanomedicine as a drug delivery system (DDS). In this work, two chemical derivatives of a low molecular weight gellan gum (96.7 kDa) with aliphatic pendant tails were processed by electrospinning technique into non-woven nanofibrous mats. In order to generate spinnable blends, it was necessary to associate poly vinyl alcohol (PVA). The relationships between the physicochemical properties and the processability via electrospinning technique of gellan gum alkyl derivatives (GG-C8 and GG-C12 having a degree of alkyl chain derivatization of 17 mol % and 1…

research product

An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: Evaluation of antimicrobial and chemoattractant properties.

Here, an asymmetric double-layer membrane has been designed and fabricated by electrospinning as a tool for a potential wound healing application. A hydrophobic layer has been produced by using a polyurethane-polycaprolactone (PU-PCL) copolymer and loaded with the antibacterial ciprofloxacin whereas an ion responsive hydrophilic layer has been produced by using an octyl derivative of gellan gum (GG-C8) and polyvinyl alcohol (PVA) and loaded with the growth factor FGF-2. This study investigated how the properties of this asymmetric membrane loaded with actives, were influenced by the ionotropic crosslinking of the hydrophilic layer. In particular, the treatment in DPBS and the crosslinking i…

research product

Photothermal nanofibrillar membrane based on hyaluronic acid and graphene oxide to treat Staphylococcus aureus and Pseudomonas aeruginosa infected wounds.

Here we reported the fabrication of an electrospun membrane based on a hyaluronic acid derivative (HA-EDA) to be used as a bandage for the potential treatment of chronic wounds. The membrane, loaded with graphene oxide (GO) and ciprofloxacin, showed photothermal properties and light-triggered drug release when irradiated with a near-infrared (NIR) laser beam. Free amino groups of HA-EDA derivative allowed autocrosslinking of the elec- trospun membrane; thus, a substantial enhancement in the hydrolytic resistance of the patch was obtained. In vitro antibacterial activity studies performed on Staphylococcus aureus and Pseudomonas aeruginosa revealed that such electrospun membranes, due to the…

research product

Nano-structured myelin: new nanovesicles for targeted delivery to white matter and microglia, from brain-to-brain

Neurodegenerative diseases affect millions of people worldwide and the presence of various physiological barriers limits the accessibility to the brain and reduces the efficacy of various therapies. Moreover, new carriers having targeting properties to specific brain regions and cells are needed in order to improve therapies for the brain disorder treatment. In this study, for the first time, Myelin nanoVesicles (hereafter defined MyVes) from brain-extracted myelin were produced. The MyVes have an average diameter of 100–150 ​nm, negative zeta potential, spheroidal morphology, and contain lipids and the key proteins of the myelin sheath. Furthermore, they exhibit good cytocompatibility. The…

research product

Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: Fabrication, characterization and in vitro osteoinductive properties

Item does not contain fulltext The aim of the work was to determine the effects of the chemical functionalization of hyaluronic acid (HA) with pendant aliphatic tails at different lengths and free amino groups in terms of chemical reactivity, degradation rate, drug-eluting features, and surface properties when processed as electrospun membranes (EM) evaluating the osteoinductive potential for a possible application as guided bone regeneration (GBR). To this end, a series of HA derivatives with different aliphatic tails (DD-Cx mol% ≈ 12.0 mol%) and decreasing derivatization of free amino groups (DD(EDA) mol% from 70.0 to 30.0 mol%) were first synthesized, namely Hn. Then dexamethasone-loaded…

research product

Advanced electrospun matrices based on polysaccharide derivatives for applications in regenerative medicine

The complete regeneration of damaged human tissues and organs is still a significant challenge. The integrative use of biomaterials, cells and bioactive factors in all-in-one devices exploits all current knowledge of materials science, nanotechnology and stem cell biology to best mimic the complex hierarchical architecture of native tissues. The artificial microenvironment design must be properly tuned to match the physicochemical features of the target, offering adequate nanoscale patterns and biological domains for cellular interactions. Scaffolds must promote and guide the regeneration route by mimicking host signalling pathways through the controlled release and retention of drugs or gr…

research product

Composite Hydrogels of Alkyl Functionalized Gellan Gum Derivative and Hydroxyapatite/Tricalcium Phosphate Nanoparticles as Injectable Scaffolds for bone Regeneration

An alkyl functionalized gellan gum derivative was here used to produce hydrogels containing hydroxyapatite and tricalcium phosphate nanoparticles as injectable nanostructured scaffolds for bone regeneration. The amphiphilic nature of the polysaccharide derivative along with its thermotropic behavior and ionotropic crosslinking features made possible to produce injectable bone mimetic scaffolds that can be used to release viable cells and osteoinductive biomolecules. The influence of different nanoparticles concentration on the rheological and physicochemical properties of the injectable systems was studied. We found that the presence of inorganic nanoparticles reinforces the three-dimension…

research product

Development of stimulus-sensitive electrospun membranes based on novel biodegradable segmented polyurethane as triggered delivery system for doxorubicin

In this work, redox-sensitive polyurethane urea (PUU) based electrospun membranes have been exploited to chemically tether a pH-sensitive doxorubicin derivative achieved by linking a lipoyl hydrazide to the drug via a hydrazone linkage. First, the lipoyl-hydrazone-doxorubicin derivative labelled as LA-Hy-Doxo has been syn- thesized and characterized. Then, the molecule has been tethered, via a thiol-disulfide exchange reaction, to the redox-sensitive PUU (PolyCEGS) electrospun membrane. The redox-sensitive PolyCEGS PUU has been produced by using PCL-PEG-PCL polyol and glutathione-tetramethyl ester (GSSG-OMe)4 as a chain extender. The LA-Hy- Doxo tethered electrospun membrane has showed a du…

research product