6533b7d9fe1ef96bd126ca67

RESEARCH PRODUCT

A Bayesian Learning Automata-Based Distributed Channel Selection Scheme for Cognitive Radio Networks

Ole-christopher GranmoLei JiaoXuan ZhangB. John Oommen

subject

business.industryNetwork packetComputer scienceBayesian inferenceAutomatonsymbols.namesakeCognitive radioNash equilibriumConvergence (routing)symbolsbusinessPotential gameSimulationCommunication channelComputer network

description

We consider a scenario where multiple Secondary Users SUs operate within a Cognitive Radio Network CRN which involves a set of channels, where each channel is associated with a Primary User PU. We investigate two channel access strategies for SU transmissions. In the first strategy, the SUs will send a packet directly without operating Carrier Sensing Medium Access/Collision Avoidance CSMA/CA whenever a PU is absent in the selected channel. In the second strategy, the SUs implement CSMA/CA to further reduce the probability of collisions among co-channel SUs. For each strategy, the channel selection problem is formulated and demonstrated to be a so-called "Potential" game, and a Bayesian Learning Automata BLA has been incorporated into each SU so to play the game in such a manner that the SU can adapt itself to the environment. The performance of the BLA in this application is evaluated through rigorous simulations. These simulation results illustrate the convergence of the SUs to the global optimum in the first strategy, and to a Nash Equilibrium NE point in the second.

https://doi.org/10.1007/978-3-319-07467-2_6