6533b7d9fe1ef96bd126cc71
RESEARCH PRODUCT
Semantic and topological classification of images in magnetically guided capsule endoscopy
Joachim HorneggerAleksandar JuloskiAlain LalandeElli AngelopoulouPeter RennertRainer KuthPhilip Mewessubject
Color histogramComputer scienceFeature extraction[INFO.INFO-IM] Computer Science [cs]/Medical ImagingImage processingFundus (eye)Content-based image retrieval030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences0302 clinical medicineDiscriminative modelCapsule endoscopylaw[INFO.INFO-IM]Computer Science [cs]/Medical ImagingmedicineUpper gastrointestinalComputer visionSegmentationAntrumContextual image classification[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryStomachmedicine.anatomical_structureFeature (computer vision)Duodenum030211 gastroenterology & hepatologyArtificial intelligencebusinessdescription
International audience; Magnetically-guided capsule endoscopy (MGCE) is a nascent technology with the goal to allow the steering of a capsule endoscope inside a water filled stomach through an external magnetic field. We developed a classification cascade for MGCE images with groups images in semantic and topological categories. Results can be used in a post-procedure review or as a starting point for algorithms classifying pathologies. The first semantic classification step discards over-/under-exposed images as well as images with a large amount of debris. The second topological classification step groups images with respect to their position in the upper gastrointestinal tract (mouth, esophagus, stomach, duodenum). In the third stage two parallel classifications steps distinguish topologically different regions inside the stomach (cardia, fundus, pylorus, antrum, peristaltic view). For image classification, global image features and local texture features were applied and their performance was evaluated. We show that the third classification step can be improved by a bubble and debris segmentation because it limits feature extraction to discriminative areas only. We also investigated the impact of segmenting intestinal folds on the identification of different semantic camera positions. The results of classifications with a support-vector-machine show the significance of color histogram features for the classification of corrupted images (97%). Features extracted from intestinal fold segmentation lead only to a minor improvement (3%) in discriminating different camera positions.
year | journal | country | edition | language |
---|---|---|---|---|
2012-02-23 |