6533b7d9fe1ef96bd126ccd3

RESEARCH PRODUCT

Thermal effects during adsorption of n-butane on a slilicalite-1 membrane. A non-equilibrium molecular dynamics study

Signe KjelstrupIsabella InzoliJean-marc SimonDick Bedeaux

subject

DiffusionEnthalpyThermodynamics02 engineering and technology010402 general chemistry01 natural sciences[PHYS.PHYS.PHYS-CHEM-PH] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Biomaterialschemistry.chemical_compoundMolecular dynamicsColloid and Surface ChemistryAdsorptionThermal conductivityComputingMilieux_MISCELLANEOUSButane021001 nanoscience & nanotechnologyThermal conduction0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Membranechemistry[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technology

description

Abstract Non-equilibrium molecular dynamic (NEMD) simulations have been used to study the kinetics of adsorption of n-butane molecules in a silicalite membrane. We have chosen this simple well-known process to demonstrate that the process is characterized by two stages, both non-isothermal. In the first stage the large chemical driving force leads to a rapid uptake of n-butane in all the membrane and a simultaneous increase in the membrane temperature, explained by the large enthalpy of adsorption, Δ H = − 61.6 kJ / mol butane. A diffusion coefficient for transport across the external surface layer is calculated from the relaxation time; a value of 3.4 × 10 −9 m 2 / s is found. During the adsorption, a significant thermal driving force develops across the external surface of the membrane, which leads to an energy flux out of the membrane during the second stage. In this stage a thermal conductivity of 3.4 × 10 −4 W / K m is calculated from the corresponding relaxation time for the surface, confirming that the thermal conduction is the rate-limiting step. The aim of this paper is to demonstrate that a thermal driving force must be taken into account in addition to a chemical driving force in the description of transport in nano-porous materials.

https://hal.archives-ouvertes.fr/hal-00454049