6533b7d9fe1ef96bd126cd22

RESEARCH PRODUCT

Creep Behavior of Poly(lactic acid) Based Biocomposites

Vincenzo FioreMarco MorrealeMaria Chiara Mistretta

subject

biocomposites; PLA; flax; jute; creepMaterials scienceflaxjuteCompression molding02 engineering and technologyBiocomposites; Creep; Flax; Jute; PLA010402 general chemistry01 natural scienceslcsh:TechnologyArticlecreepchemistry.chemical_compoundUltimate tensile strengthGeneral Materials ScienceComposite materiallcsh:Microscopylcsh:QC120-168.85biocompositeslcsh:QH201-278.5lcsh:TAdhesion021001 nanoscience & nanotechnology0104 chemical sciencesLactic acidSynthetic fiberSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiCreepchemistrylcsh:TA1-2040Polymer compositesPLAlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)Biocompositelcsh:TK1-9971

description

Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.

10.3390/ma10040395http://www.mdpi.com/1996-1944/10/4/395