6533b7d9fe1ef96bd126cd44

RESEARCH PRODUCT

The chemical bonds in CuH, Cu2, NiH, and Ni2 studied with multiconfigurational second order perturbation theory

Ignacio Nebot-gilManuela MerchánRosendo Pou-amérigoBjörn O. RoosPer-åke Malmqvist

subject

Chemical BondsGeneral Physics and AstronomyDissociation EnergyDipole MomentsPerturbation Theory ; Chemical Bonds ; Configuration Interaction ; Copper Hydrides ; Nickel Hydrides ; Copper ; Nickel ; Electron Correlation ; Core Levels ; Dissociation Energy ; Dipole Moments ; Bond Lengths ; Diatomic MoleculesCore LevelsBond LengthsNickelPhysical and Theoretical ChemistryPerturbation theory:FÍSICA::Química física [UNESCO]Nickel HydridesDiatomic MoleculesElectronic correlationChemistryConfiguration interactionBond-dissociation energyDiatomic moleculeUNESCO::FÍSICA::Química físicaBond lengthConfiguration InteractionChemical bondCopper HydridesPerturbation TheoryElectron CorrelationAtomic physicsGround stateCopper

description

The performance of multiconfigurational second order perturbation theory has been analyzed for the description of the bonding in CuH, Cu2, NiH, and Ni2. Large basis sets based on atomic natural orbitals (ANOS) were employed. The effects of enlarging the active space and including the core‐valence correlation contributions have also been analyzed. Spectroscopic constants have been computed for the corresponding ground state. The Ni2 molecule has been found to have a 0+g ground state with a computed dissociation energy of 2.10 eV, exp. 2.09 eV, and a bond distance of 2.23 Å. The dipole moments of NiH and CuH are computed to be 2.34 (exp. 2.4±0.1) and 2.66 D, respectively. pou@uv.es ; merchan@uv.es ; nebot@uv.es

10.1063/1.467411http://hdl.handle.net/10550/18545