6533b7d9fe1ef96bd126cd63

RESEARCH PRODUCT

Genomic structure and paralogous regions of the inversion breakpoint occurring between human chromosome 3p12.3 and orangutan chromosome 2.

Ying YueFengtang YangThomas HaafFrank GrütznerM.a. Ferguson-smithEnkhjargal Tsend-ayushBärbel Grossmann

subject

Genome evolutionHerpesvirus 4 HumanPan troglodytesBiologyHybrid CellsChimpanzee genome projectEvolution MolecularContig MappingChromosome 19Pongo pygmaeusGeneticsAnimalsHumansLymphocytesMolecular BiologyGenetics (clinical)In Situ Hybridization FluorescenceChromosomal inversionCell Line TransformedSequence DeletionGeneticsHuman evolutionary geneticsCercopithecidaeChromosome BreakageGenome projectChromosomes MammalianChromosome InversionChromosomes Human Pair 3Chromosome breakageChromosome 21

description

Intrachromosomal duplications play a significant role in human genome pathology and evolution. To better understand the molecular basis of evolutionary chromosome rearrangements, we performed molecular cytogenetic and sequence analyses of the breakpoint region that distinguishes human chromosome 3p12.3 and orangutan chromosome 2. FISH with region-specific BAC clones demonstrated that the breakpoint-flanking sequences are duplicated intrachromosomally on orangutan 2 and human 3q21 as well as at many pericentromeric and subtelomeric sites throughout the genomes. Breakage and rearrangement of the human 3p12.3-homologous region in the orangutan lineage were associated with a partial loss of duplicated sequences in the breakpoint region. Consistent with our FISH mapping results, computational analysis of the human chromosome 3 genomic sequence revealed three 3p12.3-paralogous sequence blocks on human chromosome 3q21 and smaller blocks on the short arm end 3p26→p25. This is consistent with the view that sequences from an ancestral site at 3q21 were duplicated at 3p12.3 in a common ancestor of orangutan and humans. Our results show that evolutionary chromosome rearrangements are associated with microduplications and microdeletions, contributing to the DNA differences between closely related species.   

10.1159/000080807https://pubmed.ncbi.nlm.nih.gov/15545721