6533b7d9fe1ef96bd126cf18

RESEARCH PRODUCT

Optical modeling of nickel-base alloys oxidized in pressurized water reactor

Marc FoucaultEric FinotOlivier CalonneA. Clair

subject

Materials sciencePASSIVE FILMSCORROSION BEHAVIOROxidechemistry.chemical_elementDIFFUSE REFLECTION SPECTROSCOPY02 engineering and technologyDielectric01 natural sciencesFocused ion beamCorrosionchemistry.chemical_compoundTHIN-FILMSX-ray photoelectron spectroscopy0103 physical sciencesMaterials ChemistryXPSThin film010302 applied physicsHIGH-TEMPERATURE WATERMetallurgyMetals and AlloysSurfaces and InterfacesOXIDE-FILMS021001 nanoscience & nanotechnologySTAINLESS-STEELSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsNickelchemistryChemical engineeringTransmission electron microscopyHYDROGENATED WATERGROWTH0210 nano-technology

description

International audience; The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined.

https://hal.archives-ouvertes.fr/hal-00750042