6533b7d9fe1ef96bd126d5b9

RESEARCH PRODUCT

Numerical solution of a class of nonlinear boundary value problems for analytic functions

H. Weber

subject

Nonlinear systemShooting methodApplied MathematicsGeneral MathematicsLaurent seriesNumerical analysisMathematical analysisFree boundary problemGeneral Physics and AstronomyBoundary value problemGalerkin methodMathematicsAnalytic function

description

We analyse a numerical method for solving a nonlinear parameter-dependent boundary value problem for an analytic function on an annulus. The analytic function to be determined is expanded into its Laurent series. For the expansion coefficients we obtain an operator equation exhibiting bifurcation from a simple eigenvalue. We introduce a Galerkin approximation and analyse its convergence. A prominent problem falling into the class treated here is the computation of gravity waves of permanent type in a fluid. We present numerical examples for this case.

https://doi.org/10.1007/bf00944439