6533b7d9fe1ef96bd126d678
RESEARCH PRODUCT
Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy
Stefano Di BiaseFrancesca RappaValter D. LongoChanghan LeeMin WeiHong Seok ShimManlio VinciguerraHamed MirzaeiSebastian BrandhorstKyung Hwa KimFrancesco Cappellosubject
0301 basic medicineTime FactorsImmunology and Microbiology (all)Peptide Hormonesmedicine.medical_treatmentAMP-Activated Protein KinasesToxicologyPathology and Laboratory MedicineBiochemistryDexamethasoneMiceEndocrinologyAMP-activated protein kinaseAtrial natriuretic peptideNatriuretic Peptide BrainMedicine and Health SciencesNatriuretic peptideInsulinSmall interfering RNAsBiology (General)Statistical DatabiologyOrganic CompoundsGeneral NeuroscienceMonosaccharidesHeartFastingMetformin3. Good healthMetforminNucleic acidsChemistryPhysical SciencesFemaleAnatomyGeneral Agricultural and Biological SciencesStatistics (Mathematics)Atrial Natriuretic FactorResearch Articlemedicine.drugmedicine.medical_specialtyQH301-705.5medicine.drug_classCarbohydratesEGR1Antineoplastic AgentsCardiotoxinsGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesNatriuretic PeptideStress PhysiologicalInternal medicineGeneticsmedicineAnimalsNon-coding RNAProtein kinase AEarly Growth Response Protein 1Diabetic EndocrinologyNeuroscience (all)Biochemistry Genetics and Molecular Biology (all)Biology and life sciencesToxicityGeneral Immunology and MicrobiologyInsulinOrganic ChemistryChemical CompoundsCorrectionAMPKCyclic AMP-Dependent Protein KinasesHormonesGene regulationDietAtrial Natriuretic PeptideMice Inbred C57BLNeuroscience (all); Immunology and Microbiology (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)Glucose030104 developmental biologyEndocrinologyAgricultural and Biological Sciences (all)CytoprotectionMetabolic DisordersHyperglycemiaCardiovascular Anatomybiology.proteinRNAGene expressionMathematicsdescription
Fasting reduces glucose levels and protects mice against chemotoxicity, yet drugs that promote hyperglycemia are widely used in cancer treatment. Here, we show that dexamethasone (Dexa) and rapamycin (Rapa), commonly administered to cancer patients, elevate glucose and sensitize cardiomyocytes and mice to the cancer drug doxorubicin (DXR). Such toxicity can be reversed by reducing circulating glucose levels by fasting or insulin. Furthermore, glucose injections alone reversed the fasting-dependent protection against DXR in mice, indicating that elevated glucose mediates, at least in part, the sensitizing effects of rapamycin and dexamethasone. In yeast, glucose activates protein kinase A (PKA) to accelerate aging by inhibiting transcription factors Msn2/4. Here, we show that fasting or glucose restriction (GR) regulate PKA and AMP-activated protein kinase (AMPK) to protect against DXR in part by activating the mammalian Msn2/4 ortholog early growth response protein 1 (EGR1). Increased expression of the EGR1-regulated cardioprotective peptides atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in heart tissue may also contribute to DXR resistance. Our findings suggest the existence of a glucose–PKA pathway that inactivates conserved zinc finger stress-resistance transcription factors to sensitize cells to toxins conserved from yeast to mammals. Our findings also describe a toxic role for drugs widely used in cancer treatment that promote hyperglycemia and identify dietary interventions that reverse these effects.
year | journal | country | edition | language |
---|---|---|---|---|
2017-03-01 | PLOS Biology |