6533b7d9fe1ef96bd126d6af
RESEARCH PRODUCT
Sigma-1 Receptor Activation Induces Autophagy and Increases Proteostasis Capacity In Vitro and In Vivo
Heike HuesmannMaximilian G. ChristAndreas KernHeike NagelChristian Behlsubject
autophagyProtein aggregationNeuroprotectionArticleProtein AggregatesmedicineAnimalsHumansParalysisReceptors sigmaPhosphorylationCaenorhabditis elegansFuransReceptorlcsh:QH301-705.5Caenorhabditis elegansSigma-1 receptorproteostasisbiologyChemistryNeurodegenerationAutophagyneurodegenerationGeneral Medicine<i>C. elegans</i>medicine.diseasebiology.organism_classificationCell biologyHEK293 CellsProteostasissigma-1 receptorlcsh:Biology (General)C. elegansHeLa Cellsdescription
Dysfunction of autophagy and disturbed protein homeostasis are linked to the pathogenesis of human neurodegenerative diseases and the modulation of autophagy as the protein clearance process has become one key pharmacological target. Due to the role of sigma-1 receptors (Sig-1R) in learning and memory, and the described pleiotropic neuroprotective effects in various experimental paradigms, Sig-1R activation is recognized as one potential approach for prevention and therapy of neurodegeneration and, interestingly, in amyotrophic lateral sclerosis associated with mutated Sig-1R, autophagy is disturbed. Here we analyzed the effects of tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73), a muscarinic receptor ligand and Sig-1R agonist, on autophagy and proteostasis. We describe, at the molecular level, for the first time, that pharmacological Sig-1R activation a) enhances the autophagic flux in human cells and in Caenorhabditis elegans and b) increases proteostasis capacity, ultimately ameliorating paralysis caused by protein aggregation in C. elegans. ANAVEX2-73 is already in clinical investigation for the treatment of Alzheimer&rsquo
year | journal | country | edition | language |
---|---|---|---|---|
2019-03-02 | Cells |