6533b7d9fe1ef96bd126d6b1
RESEARCH PRODUCT
Dark coupling and gauge invariance
M. B. GavelaStefano RigolinLaura Lopez HonorezLaura Lopez HonorezOlga Menasubject
AstrofísicaAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)Monte Carlo methodFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologysymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesCosmological perturbation theoryGauge theoryAdiabatic process010303 astronomy & astrophysicsPhysics010308 nuclear & particles physicsFísicaAstronomy and AstrophysicsMarkov chain Monte CarloHigh Energy Physics - PhenomenologyQuantum electrodynamicssymbolsDark energyHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
We study a coupled dark energy–dark matter model in which the energymomentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
year | journal | country | edition | language |
---|---|---|---|---|
2010-05-03 |