Neutrino mixing and CP-violation
The prospects of measuring the leptonic angles and CP-odd phases at a neutrino factory are discussed in two scenarios: 1) three active neutrinos as indicated by the present ensemble of atmospheric plus solar data; 2) three active plus one sterile neutrino when the LSND signal is also taken into account. For the latter we develop one and two mass dominance approximations. The appearance of wrong sign muons in long baseline experiments and tau leptons in short baseline ones provides the best tests of CP-violation in scenarios 1) and 2), respectively.
Dark coupling and gauge invariance
We study a coupled dark energy–dark matter model in which the energymomentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
Physics at a future Neutrino Factory and super-beam facility
The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, …
Dark coupling
30 pages, 10 figures, 3 tables.-- Pre-print archive.
Biases on cosmological parameters by general relativity effects
General relativistic corrections to the galaxy power spectrum appearing at the horizon scale, if neglected, may induce biases on the measured values of the cosmological parameters. In this paper, we study the impact of general relativistic effects on non standard cosmologies such as scenarios with a time dependent dark energy equation of state, with a coupling between the dark energy and the dark matter fluids or with non-Gaussianities. We then explore whether general relativistic corrections affect future constraints on cosmological parameters in the case of a constant dark energy equation of state and of non-Gaussianities. We find that relativistic corrections on the power spectrum are no…
Summary of golden measurements at a ν-factory
The precision and discovery potential of a neutrino factory based on muon storage rings is summarized. For three-family neutrino oscillations, we analyze how to measure or severely constraint the angle $\theta_{13}$, CP violation, MSW effects and the sign of the atmospheric mass difference $\Delta m^2_{23}$. The appearance of ``wrong-sign muons'' at three reference baselines is considered: 732 km, 3500 km and 7332 km. We exploit the dependence of the signal on the neutrino energy, and include as well realistic background estimations and detection efficiencies. The optimal baseline turns out to be $O$(3000 km).
Four species neutrino oscillations at nu-Factory: sensitivity and CP-violation
The prospects of measuring the leptonic angles and CP-odd phases at a {\em neutrino factory} are discussed in the scenario of three active plus one sterile neutrino. We consider the $\nu_\mu \raw \nu_e$ LSND signal. Its associated large mass difference leads to observable neutrino oscillations at short ($\sim 1$ km) baseline experiments. Sensitivities to the leptonic angles down to $10^{-3}$ can be easily achieved with a 1 Ton detector. Longer baseline experiments ($\sim 100$ km) with a 1 Kton detector can provide very clean tests of CP-violation especially through tau lepton detection.
Golden measurements at a neutrino factory
The precision and discovery potential of a neutrino factory based on muon storage rings is studied. For three-family neutrino oscillations, we analyse how to measure or severely constraint the angle $\theta_{13}$, CP violation, MSW effects and the sign of the atmospheric mass difference $\Delta m^2_{23}$. We present a simple analytical formula for the oscillation probabilities in matter, with all neutrino mass differences non-vanishing, which clarifies the subtleties involved in disentangling the unknown parameters. The appearance of ``wrong-sign muons'' at three reference baselines is considered: 732 km, 3500 km, and 7332 km. We exploit the dependence of the signal on the neutrino energy, …