6533b7d9fe1ef96bd126d7e4
RESEARCH PRODUCT
Physicochemical characterization and photoelectrochemical analysis of iron oxide films
Hiroki HabazakiYoshiki KonnoMonica SantamariaS. TerracinaF. Di Quartosubject
Materials scienceAnodizingNanoporousBand gapInorganic chemistryAnalytical chemistryIron oxideThermal treatmentHematiteCondensed Matter PhysicsPhysicochemical characterization photoelectrochemical analysis iron oxide filmssymbols.namesakechemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica Applicatachemistryvisual_artElectrochemistryvisual_art.visual_art_mediumsymbolsGeneral Materials ScienceElectrical and Electronic EngineeringRaman spectroscopyFluoridedescription
Iron oxide films with a nanoporous structure were grown by anodizing sputter-deposited Fe in a fluoride containing ethylene glycol solution and annealed under air exposure at different temperatures. X-ray diffraction and Raman spectroscopy allowed to identify the presence of hematite and/or magnetite after thermal treatment for films annealed at T ≥ 400 °C under air exposure. According to GDOES compositional depth profiles, the thermal treatment sensitively reduced the amount of fluoride species incorporated into the film during the anodizing process. A band gap value of ~2.0 eV was estimated for all the investigated layers, while a flat band potential dependent on both the growth conditions as well as on the annealing temperature was estimated.
year | journal | country | edition | language |
---|---|---|---|---|
2013-06-06 |