6533b7dafe1ef96bd126d9a0

RESEARCH PRODUCT

Bilinear R-parity violation with flavor symmetry

Stefano MorisiAvelino VicenteJosé W. F. ValleFederica BazzocchiEduardo Peinado

subject

Particle physicsNuclear and High Energy PhysicsSupersymmetric Standard ModelFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)R-parityDouble beta decay0103 physical sciencesDiscrete and Finite SymmetriesNeutrino Physics010306 general physicsNeutrino oscillationMixing (physics)Physics010308 nuclear & particles physicsComputer Science::Information RetrievalMass generationHigh Energy Physics::PhenomenologyFísicaMassless particleHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Beyond Standard ModelHigh Energy Physics::ExperimentNeutrinoLepton

description

Bilinear R-parity violation (BRPV) provides the simplest intrinsically supersymmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry Lambda(4) with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles theta(13) and theta(23) in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutrinoless double beta decay.

10.1007/jhep01(2013)033https://hal.archives-ouvertes.fr/hal-00669371